
	 Localized	Dialog	System	for	Unity	–	Page	1	 	

LOCALIZED	DIALOGS	&	CUTSCENES	-	For	Unity.	
www.unitygamesdevelopment.co.uk	

Created	By	Melli	Georgiou	

©	2012	-	2023	Hell	Tap	Entertainment	LTD	

	

	
	

	

	

	

	

	

	

	

	

	

	

	

	

	

	 Localized	Dialog	System	for	Unity	–	Page	2	 	

Table of Contents

Version	History	..	5	
Installation	and	Setup	Guide	...	10	

Legacy	LDC	Upgrade	Guide	..	11	
Setup	...	11	
Upgrading	Your	Scripts	..	12	
Cleaning	Up	...	12	

About	Dialogs	...	13	
About	Dialog	Controllers	...	13	
About	Dialog	Screens	..	13	

About	Dialog	Localization	..	14	
Introduction	...	14	
Language	Detection	Modes	...	14	
Supported	Languages	...	15	

Setting	Up	A	Dialog	Screen	–	Dialogs	Tab	..	16	
Introduction	...	16	
Dialog	Styles	...	16	
Dialog	Properties	...	18	

Setting	Up	A	Dialog	Screen	–	The	“Title”	Dialog	Style	...	20	

Setting	Up	A	Dialog	Screen	–	The	“Icon	Grid”	Dialog	Style	21	

Setting	Up	A	Dialog	Screen	–	The	“Logic”	Dialog	Style	..	23	
Setting	Up	A	Dialog	Screen	–	Navigate	Tab	...	24	
Main	Options	..	24	
The	Last	Dialog	...	25	
Navigation	Callbacks	..	26	

Setting	Up	A	Dialog	Screen	–	Actions	Tab	(GameObjects)	27	

Setting	Up	A	Dialog	Screen	–	Actions	Tab	(Background)	28	
Setting	Up	A	Dialog	Screen	–	Actions	Tab	(Actors)	..	29	

Setting	Up	A	Dialog	Screen	–	Actions	Tab	(Audio)	...	30	
Setting	Up	A	Dialog	Screen	–	Actions	Tab	(Tokens	&	PlayerPrefs)	31	
About	PlayerPrefs	and	LDC	Tokens	..	31	
Setup	Unity	PlayerPrefs	...	32	
Setup	LDC	Tokens	...	32	
File	Management	..	32	

Setting	Up	A	Dialog	Screen	–	Actions	Tab	(Localization)	33	

Setting	Up	A	Dialog	Screen	–	Actions	Tab	(3rd	Party	/	uSequencer)	34	
Setting	Up	A	Dialog	Screen	–	Actions	Tab	(3rd	Party	/	RT-Voice)	35	

Setting	Up	A	Dialog	Screen	–	Localize	Tab	..	36	
Dialog	Library	/	Cast,	Scenes,	and	Buttons	...	37	
Setting	Up	Animations	..	37	
Accessing	the	Cast	from	the	Dialog	Screen	..	37	

	 Localized	Dialog	System	for	Unity	–	Page	3	 	

Dialog	UI	-	Settings	..	38	
Transitions	...	38	
UI	Options:	..	38	
Text	Effects:	...	39	
Input	Options:	..	39	
File	Management	Options:	..	39	
Miscellaneous:	...	40	

$Token	Injectors	...	41	
How	To	Setup	A	Token	..	41	
How	To	Use	A	Token	In	A	Dialog	..	41	

@Style	Injectors	...	43	
How	To	Setup	A	Custom	Style	...	43	
Properties	Of	A	Style	Injector	...	44	
How	To	Use	A	Style	Injector	In	A	Dialog	..	44	
How	To	Use	Styles	And	Tokens	In	A	Dialog	..	45	

@System	Injectors	..	46	
Cadence	Keywords	...	46	
Typewriter	Speed	Keywords	...	47	
Automatic	Scrolling	Speed	Keywords	..	48	

File	Management	(Save	/	Load)	..	49	
File	Management	Explained	...	49	
Dialog	Actions	..	50	
Advanced	Implementations	..	50	

LDC	API	-	Common	Scripts	..	51	

LDC	API	–	Core	Functions	...	53	
LDC	API	–	Building	Dialogs	...	55	
Step	1	–	The	Core	Template	...	55	
Step	2	–	Introduction	...	56	
Step	2a	–	Dynamic	Next	Screen	..	56	
Step	2b	–	Dynamic	One-Button	Screen	..	57	
Step	2c	–	Dynamic	Yes	Or	No	Screen	..	58	
Step	2d	–	Dynamic	Two	Button	Screen	..	59	
Step	2e	–	Dynamic	Multiple	Button	Screen	..	60	
Step	2f	–	Dynamic	Data	Entry	Screen	..	61	
Step	2g	–	Dynamic	Password	Screen	...	62	
Step	2h	–	Dynamic	Title	Screen	..	63	
Step	2i	–	Dynamic	Popup	Screen	...	64	
Step	2j	–	Dynamic	Icon	Grid	Screen	..	65	

Google	Spreadsheets	..	68	
Preparing	A	Spreadsheet	For	LDC	..	68	
Understanding	The	Google	Spreadsheet	..	69	
Working	With	The	Google	Spreadsheet	..	70	
Importing	A	Google	Spreadsheet	From	Your	Google	Drive	..	72	
Updating	An	Existing	Dialog	With	A	Google	Spreadsheet	..	73	

The	GUI	...	75	
Localized	GUI	Skins	..	75	
DialogUI	...	75	
Designing	New	GUI	Skins	...	76	

	 Localized	Dialog	System	for	Unity	–	Page	4	 	

Dialog	On	GUI	..	78	
Rendering	..	78	
GUI	Rendering	..	78	
GUI	Scaling	..	79	
Skins	HD	/	Skins	SD	..	79	
HD	Options	..	80	

Setting	Up	A	World	Space	GUI	...	81	
How	To	Setup	A	Basic	World-Space	GUI	..	81	

Dialog	World	Space	GUI	..	82	
Disabled	Input	...	82	
Mouse	Input	..	82	
Transform	Input	...	83	
Raycasting	..	84	
Options	...	85	
Dialog	World	Space	Line	Renderer	..	86	
World	Space	GUI	Considerations	..	87	

Support	...	88	
	

	

	 Localized	Dialog	System	for	Unity	–	Page	5	 	

Version History
	
V6.4	
-	Fixed	an	issue	when	scrolling	icon	grids	on	mobile	platforms.		
	
V6.3	
-	Updated	to	allow	for	users	to	enter	their	own	commercial	Yandex	keys	in	Unity	Preferences.	
-	Bugfix	in	Dialog	Screen	API	that	stopped	actors	fading	out	under	certain	situations.	
	
V6.1	
-	Updated	for	Unity	2019.3	
	
V6.0.1	
-	Next	IDs	are	automatically	populated	when	creating	a	new	Next	screen.	
-	In	navigation,	we	can	now	load	scenes	and	find	other	dialogs	using	tokens.	
-	A	new	demo	showing	how	to	create	an	automatic	save	and	load	setup	in	visual	novels.	
-	Minor	improvements	and	bugfixes.	
	
V6.0	
-	New	World-Space	GUI	mode	with	support	for	VR.	
-	New	on-screen	keyboard	variations	for	Data	Entry	&	Password	Dialog	Styles.	
-	Performance	improvements	in	Editor	and	at	runtime.	
-	Auto-translate	routines	updated	for	newer	unity	versions.	
-	Bugfixes.	
	
V5.0	
-	LDC	is	now	completely	rewritten	in	C#.	
-	Google	Spreadsheet	Importer	now	works	within	a	C#	Project.	
-	All	Demos	have	also	been	rewritten	to	C#.	
	
UPGRADE	NOTES:	
-	Includes	modified	version	of	LDC	v4.8.3	and	a	DialogScreen	converter	tool	to	help	users	upgrade.	
-	Logic	operators	may	reset	to	“Equals”	unless	you	follow	the	upgrade	guide	and	use	the	converter	tool.	
-	All	scripts	are	now	in	the	HellTap.LDC	namespace.	
-	JS	Function	Array	Callbacks	have	been	removed	from	the	API	and	replaced	with	UnityEvents.	
	
v4.8.3	
-	Now	compatible	with	Unity	2017.1.	
	
v4.8.2	
-	Logic	screens	now	have	new	options!	After	a	logic	condition	is	passed,	you	can	navigate	to	another	screen	directly,	use	a	
random	range	of	screens	or	use	a	token	to	dynamically	set	the	next	screen!	This	multiplies	the	power	of	visual	scripting	
within	LDC	as	you	can	now	use	tokens	to	store	screen	ID’s	as	well	as	randomizing	the	flow	of	dialogs!		
-	Sliding	your	finger	anywhere	in	the	screen	can	scroll	Popup	Dialogs	with	manual	scrolling.		
-	Icon	Grid	can	now	set	if	buttons	that	PASS	logic	conditions	are	disabled	or	visible	(allowing	you	to	create	read-only	lists).		
-	New	Audio	options	in	DialogUI.	You	can	now	force	audio	to	end	at	the	end	of	each	screen	and	also	fade	audio	out	when	a	
dialog	ends.		
-	Dialogs	can	now	be	switched	from	Automatically	Scrolling	to	manual	scrolling	when	tapped	/	clicked.	Option	found	in	
Settings	>	Text	Effects.		
-	New	API	functions	to	Create	a	dialog	and	override	its	start	ID	
-	New	API	functions	to	change	localizations.		
	
v4.8.1	
-	Now	compatible	with	Unity	5.4.	
	
4.8	
-	uGUI	Elements	can	be	placed	above	LDC	GUI.	
-	Updates	To	RTVoice	3rd	Party	Actions.	
	
v4.7	
-	Popup	Dialog	Styles	can	now	have	custom	size	for	buttons	as	well	as	custom	button	spacing.	
-	When	adding	AudioClips,	the	“Seconds	To	Show”	option	is	automatically	set	based	on	the	length	of	the	clip.	
-	Icon	Grid	Buttons	can	now	be	easily	re-ordered	in	the	inspector.	
-	Icon	Grid	Titles	and	Labels	can	now	have	line	breaks.	
-	Setting	to	stop	speech	audio	if	dialogs	end	early	(DialogUI	>	UI	Options	>	Stop	Audio	If	Dialog	Ends).	
-	Dialog	Styles	with	custom	font	sizes	are	automatically	doubled	when	using	HD	skins.	
-	BUGFIX:	Fixed	a	bug	in	the	Icon	Grid	which	could	cause	errors	when	using	logic	to	hide	a	button.	
-	BUGFIX:	Fixed	SendMessage	action	bug.	You	can	now	directly	set	the	GameObject	reference	for	SendMessages.	
	
v4.6.2	
-	LDC	dialog	text	field	in	the	inspector	is	now	multiline.	
-	Title	text	using	the	‘Title'	Dialog	Style	will	now	use	the	main	text	color	set	in	the	inspector.	

	 Localized	Dialog	System	for	Unity	–	Page	6	 	

	
v4.6.1	
-	Unity	5.3	Compatible	(script	fixes	and	inspectors	updated	in	Unity	5.x	to	be	more	stable	and	reliable).	
	
v4.6	
-	Completely	new	visual	editor	for	DialogUI!	Now	every	part	of	LDC	has	it’s	own	visual	editor!	=)	
-	Screen	Transitions!	Choose	from	18	transition	effects	and	give	each	screen	its	own	in	and	out	screen	transition!	Default	
transitions	can	be	setup	in	the	DialogUI	>	Settings.	
-	API	Updated	To	Support	Screen	Transitions.	
-	SendMessage	can	now	send	booleans	as	arguments.	
-	You	can	now	use	Debug.Log	actions	in	your	LDC	screens	at	the	start	and	end	of	each	screen.	Use	this	to	get	the	status	of	
tokens	or	any	other	custom	message	you’d	like	to	print	to	the	console!	
-	New	Setting	for	how	fast	to	fade	the	background	UI	when	it	is	being	hidden	/	shown.	
-	New	option	to	only	play	an	RT-Voice	if	no	audio	is	setup	on	that	particular	screen.	This	allows	you	to	use	temporary	Text	
to	speech	to	test	dialogs	while	you	wait	for	voices	to	be	recorded	from	your	voice	actors!	
-	Dynamic	Dialogs	demo	updated	to	showcase	different	types	of	screen	transitions!	
-	BUGFIX:	Fixed	an	issue	where	applying	tokens	using	the	API	could	use	the	wrong	data	if	your	tokens	had	similar	names.	
-	BUGFIX:	Fixed	focus	issues	when	changing	tabs	in	the	DialogOnGUI	inspector.	
	
v4.5	

-	The	typewriter	effect	has	been	re-written	with	cadence	features	and	live	injectors	(see	below)!		
-	Use	cadence	tags	to	add	timed	Delays	as	well	as	modifying	the	speed	of	the	typewriter	at	any	point	in	your	dialog	text.		
-	Typewriter	effects	can	now	be	set	on	a	screen	by	screen	basis!		
-	Create	your	own	Text	Styles	to	add	cool	features	without	all	the	usual	nasty	code!	It	works	just	like	tokens	and	doesn’t	
require	any	closing	brackets!		Example:		"@BoldThis	is	now	Bold	Text!"	
-	Set	tags	to	set	text	color,	size,	boldness,	italics,	and	even	special	cadence	features	like	text	delays	and	live	typewriter	
speed	changes	when	using	typewriter	effects!	
-	Easier	to	use	than	Unity’s	built-in	rich	text	with	even	more	features	like	text	color	animations	and	live	opacity	balancing!		
-	You	can	now	inject	rich	text	into	your	dialogs	while	using	the	typewriter	effect!		
-	You	can	use	the	API	to	inject	tokens	and	styles	directly	into	ANY	string	in	Unity	that	supports	rich	text!	This	means	it	will	
even	work	with	Unity’s	new	GUI	system!	=)		
-	You	can	now	use	scrolling	text!	You	no	longer	have	to	worry	about	your	text	being	too	long	in	conversations!		
-	You	can	set	the	scrollable	text	to	be	either	automatically	scrolling	or	manually	scrolling	with	a	vertical	scroll	bar.			
-	Setup	scrolling	speed	and	scrollable	footer	spacing	in	DialogUI	>	Options!		
-	Scrollable	text	can	be	setup	on	a	screen	by	screen	basis!		
-	Use	@Scroll	tags	to	change	the	scrolling	speed	within	the	dialog	text	itself!	
-	AutoScrolling	now	works	on	subtitle	text	so	you	can	make	really	cool	things	like	credits	and	scrolling	story	sections!	
-	Override	the	default	font	and	size	of	your	Title	screens	on	a	per-screen	basis!		
-	New	controls	over	the	text	area	size	of	both	the	title	and	subtitle.				
-	Text	alignment	can	now	be	set	independently	on	each	title	and	subtitle.		
-	All	of	these	settings	are	overrides	so	you	shouldn't	have	to	modify	the	existing	GUISkins!	=)		
-	Added	Button	Alignment	in	Icon	Grid	View	(this	is	so	we	can	create	lists	with	left	orientation	without	having	to	change	
the	GUISkin!)		
-	Options	for	hiding	title	and	body	text	now	apply	to	the	Icon	Grid	styles.			
-	Setup	voices	for	RT-Voice	in	DialogUI	and	easily	play	them	in	the	actions	tab	in	LDC!	It’s	super	easy	to	use	text-to-speech	
in	your	projects	with	LDC!	Please	note	RT-Voice	only	supports	Mac	and	Windows	standalone	builds.		
-	New	section	added	to	DialogUI	for	setting	up	third	party	plugins.	You	can	setup			
-	API_DialogCreate()	function	can	now	take	an	extra	string	argument	to	allow	for	custom	GameObject	names.		
-	API	for	all	relevant	screens	updated	to	use	typewriter	and	scrolling	overrides,	as	well	as	all	the	new	features	for	Title	
screens!		
-	The	Dynamic	Dialogs	demo	has	also	been	updated	so	it’s	easy	to	learn	how	the	API	works!		
-	Fixed	an	issue	that	could	cause	custom	button	labels	to	not	appear	correctly!		
-	New	Options	to	control	the	feedback	from	LDC	via	the	console!		
-	Options	to	toggle	system,	action	and	logic	console	messages	independently.		
-	Helps	to	debug	your	setup	when	you	need	it,	and	switch	it	off	when	you	want	an	uncluttered	console!			
-	Code	enhancements	to	various	styles.		
-	New	routines	should	make	it	possible	to	add	shadows	to	your	title	and	body	text	regardless	if	you	have	custom	
backgrounds	in	your	GUIStyles.		
-	Added	some	labels	in	DialogUI	to	better	organise	the	dialog	options.	A	full	DialogUI	custom	inspector	is	planned	for	a	
future	update	soon!		
-	Fixed	an	issue	where	adding	conditions	to	Icon	Grids	would	cause	the	UI	to	become	too	wide.		
	
v4.4	
-	Automatic	Translations	for	Chinese,	Korean	and	Japanese	(note	that	Korean	and	Japanese	translations	are	still	in	beta).	
-	New	visual	DialogLocalization	Editor	with	new	options!	
-	Languages	can	now	be	detected	using	the	old	system	or	using	a	custom	PlayerPrefs	string.	
-	Language	settings	can	now	be	easily	changed	at	runtime	with	visual	actions	in	the	inspector	and	via	the	API.	GUISkins	
can	also	be	automatically	reloaded!	
-	Fixed	issue	when	switching	scenes	too	early,	which	could	cause	new	dialogs	to	not	show	properly.	
	
v4.3	
-	Unity	5	ready!	

	 Localized	Dialog	System	for	Unity	–	Page	7	 	

-	Seamless	Dialog	Thread	Navigation	-	you	can	now	seamlessly	change	to	any	screen	of	any	dialog	without	having	to	wait	
for	LDC	to	fade	in	and	out!	This	can	be	done	using	either	an	LDC	prefab	or	finding	another	LDC	Dialog	in	the	scene	by	
name.	You	can	even	choose	the	exact	screen	inside	the	new	dialog	thread	to	navigate	to!	
-	LDC	can	now	send	Tokens	as	the	string	argument	of	Navigation	Callbacks.	
-	Option	to	finish	the	Typewriter	effect	early	when	touching	the	screen	or	clicking	mouse	(DialogUI	>	Options	>	Complete	
Typewriter	Effect	On	Click	Or	Touch).	
-	Set	the	fade	in	time	of	the	background	dialog	graphics	(Dialog	UI	>	Options	>	Background	Fade	Duration).	
-	Performance	Improvement	in	the	Editor	for	large	dialog	threads	(LDC	Also	helps	you	to	split	up	your	dialog	screens	
when	they	are	getting	too	large)!	
-	Fixed	2	Button	navigation	callbacks	always	returning	0	as	a	button	ID.	
-	Typewriter	effect	algorithm	improved	to	be	more	consistent	across	all	devices.	
	
v4.2	
-	NEW	Icon	Grid	Dialog	Style!	Create	a	custom	grid	of	icons	(great	for	merchant	screens,	level	selects,	options	and	more!)	
-	Optimized	the	Popup	Dialogs	dialog	style	to	run	more	efficiently.		
-	Set	which	layer	LDC	is	being	drawn	to	with	GUI	Depth	options	in	DialogOnGUI	>	Options.		
-	LDC	custom	icon	should	show	correctly	in	Unity	4.x	inspector	windows		
-	Dropping	an	AudioClip	into	the	Dialogs	tab	can	automatically	generate	audio	filepaths	for	audio	streaming!		
-	Popup	Dialog	Icon	changed.		
-	Google	Spreadsheet	Features	moved	to	"Third	Party	Extras”	folder	as	an	optional	installation.	
	
v4.1	
-	New	DialogOnGUI	Editor	with	GUI	Scaling	features.	
-	Use	‘Stretch	To	Fill’,	‘Scale	To	Fit’,	and	‘Over	Scale’	modes	to	render	the	LDC	GUI.	
-	Minor	fixes,	including	switching	between	tabs	while	focusing	on	previous	elements.	
	
NOTE:	Due	to	the	fact	that	LDC’s	copyright	now	belongs	to	Hell	Tap	Entertainment	LTD,	there	has	been	some	rebranding	
and	renaming	of	folders.	If	you	are	updating	LDC,	keep	an	eye	out	on	this	as	Unity	often	doesn’t	correct	things	like	that.	
You	may	need	to	rename	any	folder	labeled	“Black	Zombie”	to	“Hell	Tap	Entertainment”.	Make	sure	to	backup	first!	
	
v4.0	
-	Easily	import	and	update	LDC	Dialogs	using	online	Google	Spreadsheets.	
-	NEW	Popup	Dialog	Style	–	Create	custom	popup	messages	with	animated	backgrounds	and	buttons.	
-	LDC	GUI	Abstraction	–	GUI	part	of	code	separated	to	allow	for	custom	UI	implementations	in	the	future.	
-	Navigation	Function	callbacks	–	SendMessage	when	a	user	presses	a	button.	Demo	scene	included!	
-	API	updated	to	allow	navigation	callbacks	to	be	created	with	dynamic	dialogs.	(Dynamic	Dialogs	Demo	updated.	TIP:	
Add	an	extra	null	argument	to	get	older	scripts	to	work)	
-	Setup	automatic	GUI	Skin	switching	between	different	platforms	and	builds.		
-	Focus	GUI	with	Input	Axes	as	well	as	Keycodes.	
-	Play	Audio	on	button	rollover	and	click.	
-	Inspector	Performance	vastly	improved.	
	
IMPORTANT:	Extra	conditions	on	Multiple	Buttons	had	to	be	re-written	to	work	correctly	with	Unity	4.5+.	Updating	to	
LDC	4.0	will	delete	any	extra	conditions	you	have	created	in	your	previous	Multiple	Button	screens.	
	
v3.9	
-	Create	“Data	Entry”	Dialog	Screens	dynamically	via	the	API.	The	Dynamic	Dialogs	demo	has	been	updated	to	showcase	
the	new	features	of	LDC	3.9.	
-	API	now	supports	callbacks	via	System.Action	which	should	work	as	equal	citizens	in	C#,	JS	and	Boo	(NOTE:	To	upgrade	
older	API	scripts,	just	add	another	2	null	arguments	in	every	API	“DialogAdd”	function	call).	
-	API	has	a	new	function	to	return	the	index	of	a	Token	by	name.	API_GetTokenIndex(nameOfToken	:	String)	.	
-	FIX:	Multiple	Button	screens	created	prior	to	version	3.8	are	automatically	fixed	by	the	editor	to	work	with	the	new	
version.	(HOWTO:	Select	a	dialog	that	has	a	Multiple	Screen	in	the	editor.	If	you	see	a	“FIX”	message	in	the	console	this	
will	indicate	that	the	editor	has	fixed	any	problems.	If	you	are	using	a	dialog	saved	as	a	prefab,	make	sure	you	click	“Apply”	
to	save	the	changes).	
	
v3.8	
-	Add	graphics	and	animations	to	buttons!	
-	New	“Dialog	Buttons”	section	added	to	the	Dialog	Library.	
-	You	can	now	loop	an	AudioClip	during	the	typewriter	effect.		Add	a	clip	to	DialogUI	>	Options	>	Play	Typewriter	Audio.	
-	Tokens	can	now	be	applied	directly	into	buttons.	
-	“Sort	All	Dialogs”	now	works	on	any	dialog	thread.	
-	LDC	menu	shortcuts	are	now	organized	in	the	GameObject	>	LDC	submenu.	
	
v3.7	
-	Load	/	Restart	Unity	Scenes	from	Navigate	tab.	
-	The	Navigate	tab	can	now	Link	different	Dialogs	together	by	using	prefabs	or	playing	existing	dialogs	in	the	scene.	
-	PlayMaker	Actions!	Separate	package	available	(in	‘The	LDC	Demos	&	Extras/Third	Party	Extras/PlayMaker).	
	
v3.6	
-	Logic	in	“Logic	Screens”	and	“Multiple	Buttons”	now	support	multiple	conditions	(equivalent	of	&&	operator)	
-	Dialog	Cast	/	Scenes	Inspectors	updated	to	fix	minor	display	issues	on	Unity4.x	
	

	 Localized	Dialog	System	for	Unity	–	Page	8	 	

	
v3.5.1	
-	Performance	for	typewriter	effect	improved	(especially	for	mobile)	
-	Auto-detect	language	detection	improved.	
-	Portraits	can	now	be	repositioned	using	GUISkins	(Use	‘ContentOffset’	in	the	‘Actor	Portraits’	custom	style).	
-	Buttons	can	now	be	repositioned	using	GUISkins	(Use	‘ContentOffset’	in	the	new	‘Button	Offset”	custom	style).	
v3.5	
-	Logic	Conditions	can	support	keys	from	Unity’s	PlayerPrefs	as	well	as	LDC	Tokens!	
-	Multiple	Button	Conditions	support	logic	from	PlayerPrefs	as	well	as	Tokens!	=)	
-	Create,	Edit	and	Delete	PlayerPrefs	right	inside	of	LDC,	on	a	per	screen	basis!	
-	LDC	Shows	you	a	count	of	how	many	actions	you	are	using	across	each	tab,	making	it	easier	to	keep	track	of	things!	
-	API	updated	to	dynamically	create	Title	Screens.	
-	API	Supports	function	callbacks	“At	Start”	and	“At	End”	of	every	dynamic	screen.	
-	API	now	supports	hiding	the	background	UI	on	each	dynamically	created	Dialog	Screen.	
-	Updated	API	–	Dynamic	Dialogs	Demo	to	showcase	all	the	new	features!	
-	Bugfix	–Using	Input	keys	would	sometimes	trigger	actions	twice.	
	
v3.4	
-	Automatic	Translations!	You	can	now	automatically	translate	your	Dialogs	into	Spanish,	Italian,	German,	French,	
Portuguese	and	Russian	with	a	single	click!	You	can	translate	a	single	language	per	screen,	all	languages	per	screen,	or	
ALL	languages	per	Dialog	Thread!	NOTE:	this	feature	will	be	available	in	LDC	as	long	as	Yandex	provides	the	service	without	
charge.	
-	Fixed	bug	with	changing	subtitle	color	in	“Title”	Dialogs.	
-	Fixed	bug	that	caused	localizations	to	be	lost	while	“Sorting”	dialogs	from	the	Dialog	Controller.	
-	Updated	default	Russian	Skin	to	support	Russian	Header	Text.	

v3.3	
-	UI	is	now	focus	enabled	and	fully	supports	the	Keyboard	and	most	joysticks	via	easy	to	use	KeyCodes.		
-	New	variables	in	DialogUI	to	setup	KeyCodes	(“selectGuiWithTheseKeycodes”,	“focusNextGuiWithTheseKeycodes”,	and	
“focusPreviousGuiWithTheseKeycodes”).	
-	New	“Title”	Dialog	Style.	Now	you	can	easily	create	titles,	intros,	chapters	and	more!	
-	New	Dialog	option	in	navigation	menu	to	hide	the	background	UI	strip.	Allows	for	control	on	a	per	dialog	basis.	
-	Added	gizmo	icons	to	the	LDC	scripts.	
	
v3.2	
-	The	“Multiple	Buttons”	Dialog	Style	now	supports	optional	“Conditions”	(each	button	tested	against	Token	values).	
-	Introduced	HD	(1920x1280)	Skins.	
-	Choose	between	legacy	/	HD	skins	with	“Skins	>	Use	Hi	Def	Skins”	in	DialogUI.	

v3.1	
-	Actor	Portraits	are	now	customizable	from	the	Dialog	Skin	(use	Fixed	Width	/	Height	and	Content	Offsets!).	You	can	now	
reposition	and	resize	them.	
	
v3.0	
-	Portraits,	Actor	and	Background	Layers	can	now	be	animations.	Live	updating	of	animations	in	the	inspectors.	
-	Animations	are	now	setup	in	the	Dialog	Library	(in	Dialog	Cast	and	Dialog	Scenes).	
-	Notes	feature	added	on	all	Dialog	Screens.	Easily	keep	track	of	long	dialogs	in	every	tab.	 	
	
v2.9.1	
-	Flash	builds	fixed.	
	
v2.9	
-	New	features	and	UI	for	GameObject	Actions	(SendMessage	and	de-activate	being	the	most	notable!).	
-	New	DialogUI	option	to	skip	Next	/	One	Button	Dialogs	using	Input	keys.	
-	[Fix]	Screen	duration	now	also	applies	to	One	Button	Dialogs	(as	well	as	"Next"	Dialogs).	
	
v2.8.1.1	
-	Fixed	Russian	and	Portuguese	localization	options.	
-	Fixed	Password	Screen’s	“Mask”	option.		
	
v2.8.0	
-	Added	Automatic	File	Management!	You	can	easily	save,	load	and	delete	your	tokens	into	multiple	save	slots!		
-	New	File	Management	Actions	in	the	Tokens	tab!	
-	New	File	Management	API	giving	you	full	control!	
	
v2.7.0	
-	Full	Flash	support!	LDC	should	now	be	fully	compatible	with	Flash	builds,	as	tested	with	Unity	4.1.2.	

v2.6.0	
-	Added	new	advanced	functions	to	the	API.	You	can	now	dynamically	create	entire	Dialog	threads	completely	via	
scripting.	Tokens,	Actions	and	localizations	are	not	available	via	the	API	(although	they	can	be	implemented	in	script	
anyway!).	
-	Limited	Support	for	Flash	builds.	Most	things	should	work	except	for	Token-based	actions	and	related	Dialog	styles	(eg	
Data	Entry	/	Password	screens).	

	 Localized	Dialog	System	for	Unity	–	Page	9	 	

	
v2.5.0	
-	Added	the	“Logic”	Dialog	Style.	This	allows	for	an	incredibly	powerful	way	of	using	visual	scripting	to	make	on	the	fly	
navigation	decisions.	Using	the	built-in	token	system,	you	can	compare	tokens	on	the	fly	using	localized	values	and	allow	
the	system	to	move	to	different	screens!		
-	Added	“Global	Tokens”.	Toggling	this	will	keep	your	tokens	in	tact	between	scenes.	NOTE:	Make	sure	you	have	the	same	
DialogUI	prefab	in	each	scene!	
-	Added	icons	to	the	Data	Entry,	Password,	and	Logic	Dialog	styles.	
-	The	dynamic	formatting	of	numeric	tokens	is	vastly	improved.	
	
v2.2.0	
-Added	the	“Password”	Dialog	Style.	Compare	data	entry	to	a	localized	string	or	a	token	with	2	way	navigation.	

v2.1.0	
-	3rd	Party	Scripting	API.	LDC	can	now	talk	to	and	receive	functions	easily	from	other	tools	and	scripts.	
-	uSequencer	Integration	built-in.	Setup	and	control	your	sequences	directly	from	your	Dialog	Screens!	
-	New	3rd	Party	Actions	tab	added	to	support	other	plugins	and	tools	in	the	future!	
-	Localization	component	renamed	to	DialogLocalization	to	work	better	with	other	plugins.	
	
v2.0.0	
-	“Data	Entry”	Dialog	Style	for	collecting	user	data	and	storing	them	into	Tokens.	
-	Tokens	–	Variable	like	objects	that	can	store	data.	Token	API	available	to	set	/	get	tokens	via	script.	
-	Background	&	Actor	Layers	–	Easily	create	full	screen	comic	/	visual	novel	style	cut	scenes	with	ease!	
-	Dialog	Library	–	Centralize	your	images	for	the	plugin	and	select	them	easily	in	Dialog	Screens!	
-	New	Actions	for	Background	&	Actor	Layers,	Custom	Audio	Channels	and	Tokens.	
-	Typewriter	Text	effect	and	more	Dialog	UI	options.	
-	Various	Editor	Tweaks	and	Shortcuts.	
	
v1.5.0	
-	“Multiple	Button”	Dialog	Style	for	vertically	oriented	multiple-choice	screens!	
-	More	Dialog	UI	options	to	independently	hide	different	text	elements.	
-	Dialog	UI	option	to	ignore	screen	durations,	and	force	users	to	click	“Next”	or	custom	single	buttons	to	progress.	
-	Selecting	an	actor	from	the	cast	also	replaces	the	actor	name	field	in	the	Dialog	Screen,	saving	even	more	time.	
-	Adding	a	new	Dialog	Screen	from	the	Dialog	Controller	now	copies	over	the	previous	portrait	and	actor	name.	
-	Various	UI	bug	fixes	and	validation	code.	
-	0.75	seconds	is	now	the	default	transition	speed	(25%	faster	than	previous	versions).	This	can	be	set	back	in	DialogUI.	
	
v1.2.0	
-	“Dialog	Cast”	Feature	and	small	updates	to	supporting	editors.	
	
v1.1.1	
-Updated	Documentation.	

v1.1.0	
-	Standard	Dialog	variations	implemented	into	the	new	“Dialog	Styles”	system.	
-	Custom	Single	and	Two	Button	Dialog	Styles.	
-	New	Per-Screen	transition	and	visibility	options.	
-	New	global	options	to	control	all	motion,	fades,	shadows	and	more	of	the	Dialog	UI.	
-	Memory	improvements	in	the	OnGUI	routine.	
	
v1.0	
-	First	Commercial	version	of	plugin.	

	 	

	 Localized	Dialog	System	for	Unity	–	Page	10	 	

Installation and Setup Guide
	

1) Install	the	package	file	into	your	project.	
2) Create	a	new	game	tag	called	“DialogController”	

														 	
																		NOTE:	Don’t	forget	to	create	the	DialogController	tag!	

3) Next,	we	need	to	create	the	DialogUI	object	in	
every	scene	of	our	project.	This	handles	all	of	
the	UI,	Localization	and	Audio	functions	of	the	
system.		
	
Create	the	DialogUI	object	by	clicking	on	
“GameObject	>	Create	Dialog	UI”	in	the	Unity	
menu.	The	“Dialog	UI”	object	will	appear	in	
your	scene	already	setup	for	you.	Typically,	
this	should	be	saved	as	a	prefab	so	that	it	is	the	
same	object	in	every	scene!	
	
Then,	you	should	create	a	global	library	of	your	game’s	Actors,	Portraits,	
Scenes,	Animations,	etc.	you	can	do	this	by	clicking	on	GameObject	>	
Create	Dialog	Library”.	This	GameObject	should	be	made	into	a	prefab	
that	you	can	use	on	every	scene.	
	

4) Now,	we	can	choose	which	languages	we	will	support	in	our	game.	In	the	
first	scene	of	the	project	(eg,	the	game	splash	screen),	click	on	the	“Dialog	
UI”	GameObject	and	open	the	“Supported	Languages”	section	of	the	
DialogLocalization	component	in	the	inspector.	(NOTE:	any	language	that	
is	not	checked	will	default	to	English	as	a	fallback).		

													 	

	

	 Localized	Dialog	System	for	Unity	–	Page	11	 	

Legacy LDC Upgrade Guide
	
NOTE:	For	new	users	and	projects	this	chapter	should	be	skipped	(go	to	page	12).	

For	those	of	you	who	are	trying	to	upgrade	from	LDC	v4.8.3	(Unityscript)	to	a	
newer	LDC	version	(written	in	C#),	these	are	the	steps	you	should	follow	for	
minimal	issues.	Please	note	that	upgrading	a	system	to	a	completely	different	
language	can	be	tricky,	so	I’d	recommend	doing	it	only	if	you	really	need	to.	

Setup

The	first	thing	to	do	is	BACKUP	YOUR	PROJECT.		Seriously,	this	is	tricky	stuff	
and	something	may	go	wrong.		

1) The	best	way	to	avoid	conflicts	is	to	totally	delete	the	older	LDC	files	and	
folders.	Delete	all	folders	in	the	following	default	locations	(if	you	have	
moved	them	you	need	to	track	them	down	and	remove	manually):		

Editor	Default	Resources/Editor/Hell	Tap	Entertainment/Localized	Dialogs	 	 <-	Folder	
Editor	Default	Resources/Editor/Hell	Tap	Entertainment/Shared/Scripts/HTE_EditorLibrary	 <-	File	

	 Plugins/Hell	Tap	Entertainment/Localized	Dialogs	 	 	 	 	 <-	Folder	
The	LDC	Demos	&	Extras	 	 	 	 	 	 	 <-	Folder		
	
NOTE:	Do	not	delete	your	LDC	GameObjects	from	your	game.	Only	the	
core	scripts	need	to	be	removed	so	we	can	upgrade	properly.		

2) You	may	see	compile	errors	while	you	do	this	-	don't	worry	at	this	stage.	
The	next	step	is	to	install	the	latest	LDC	package	so	it	is	the	only	version	
in	your	project.	
	

3) Download	and	unzip	the	Legacy	LDC	Updater	archive	found	here:	
http://www.unitygamesdevelopment.co.uk/Public/Promo/Localized%2
0Dialog%20Plugin/LegacyLDCUpdater		
	

4) Move	the	Legacy	LDC	folder	from	the	zip	you	downloaded	into	your	Unity	
project	here:	"The	LDC	Demos	&	Extras/Extras/	
	

5) Inside	Unity,	find	the	folder	'LDC	v483	scripts'	package	found	in	"The	
LDC	Demos	&	Extras/Extras/Legacy	LDC/"	folder	(where	you	just	
moved	it).	This	is	a	modified	version	of	LDC	v4.8.3,	which	has	its	own	
specific	folders	and	menu	items	to	make	it	easier	to	tell	them	apart		
	

6) You	can	then	install	the	'LDC	JS	to	cSharp'	converter	package	in	the	same	
folder.	By	this	point,	all	the	compile	errors	should	hopefully	be	gone	and	
you'll	have	both	LDC	and	a	modified	version	of	the	legacy	LDC	4.8.3	
working	side	by	side.		

NOTE:	If	you	had	any	custom	scripts	using	LDC	that	are	now	causing	
errors,	you	can	try	adding	"using	HellTap.LDC"	to	the	top	of	your	scripts	
to	make	them	accessible	again.	This	will	make	your	scripts	use	the	C#	
version	of	LDC.	

	 Localized	Dialog	System	for	Unity	–	Page	12	 	

Upgrading Your Scripts
	

If	you	have	worked	through	the	previous	phase	and	have	no	console	errors,	it	
would	be	a	good	time	to	make	a	backup	of	your	project.		

1) The	next	step	is	to	rebuild	your	DialogUI	and	Dialog	Library	prefab	with	
the	C#	versions	of	the	scripts.		A	quick	way	to	do	this	is	to	simply	override	
the	script	in	the	inspector	by	switching	Unity	to	"Debug	mode"	(next	to	
the	little	padlock	icon	in	the	top	right	of	the	UI),	and	dragging	the	
C#	version	of	the	script	into	the	"Script"	slot	in	the	inspector.		
	
NOTE:	The	C#	version	of	the	LDC	scripts	can	be	found	here:	
Plugins/Hell	Tap	Entertainment/LDC/Scripts/	
	
This	process	should	work	fine	for	the	DialogCast,	DialogScenes,	
DialogButtons,	DialogUI,	DialogOnGUI	and	DialogLocalization	components.	
If	they	are	prefabs,	don't	forget	to	press	the	"Apply"	button	in	the	
inspector	to	save	the	changes.		
	
	

2) You	now	need	to	upgrade	your	Dialog	Screen	objects.	Luckily,	the	"LDC	JS	
to	cSharp"	converter	tool	script	you	installed	will	make	this	a	breeze!	
Click	on	an	existing	LDC	GameObject	and	from	the	menu,	select:	
GameObject	>	LDC	(JS)	>	Convert	LDC	Dialog	To	C#	
	
This	will	convert	all	of	your	dialog	screens	(as	well	as	the	
DialogController)	into	the	C#	version	and	if	everything	goes	well,	your	
settings	will	be	preserved.		
	
Keep	an	eye	on	the	console	as	if	anything	goes	wrong	a	warning	message	
will	appear	and	you	should	be	able	to	undo	the	change.		If	the	GameObject	
was	a	prefab,	don't	forget	to	press	the	"Apply"	button	to	save	the	changes	
to	the	GameObject.	You	need	to	do	this	for	every	dialog	GameObject	in	
your	game.	It's	a	good	idea	to	make	regular	backups	during	this	process.	

Cleaning Up
	

Once	your	entire	game	is	converted,	you	can	safely	get	rid	of	the	legacy	scripts.	
These	are	the	folders	you	can	now	remove:	

	 Editor	Default	Resources/Editor/Hell	Tap	Entertainment/Localized	Dialogs	v483	
	 Editor	Default	Resources/Editor/Hell	Tap	Entertainment/LDC	JS	to	cSharp	
	 Plugins/Hell	Tap	Entertainment/Localized	Dialogs	v483		

That's	it,	you	should	now	be	up	and	running	with	LDC	5.0!	 	

	 Localized	Dialog	System	for	Unity	–	Page	13	 	

About Dialogs

	

Dialogs	are	built	up	of	one	Dialog	Controller	component,	and	at	least	one	
Dialog	Screen	component.	When	a	dialog	is	in	use,	it	sends	data	to	the	“DialogUI”	
class	where	the	GUI	side	of	things	are	taken	care	of.	Luckily,	we	have	some	pretty	
cool	editors	to	work	with!	

You	can	create	a	new	dialog	object	(also	known	as	a	‘Dialog	Thread’)	by	clicking	
on	“GameObject	>	LDC	>	Create	New	Dialog”	in	the	Unity	menu.	

	 	

About Dialog Controllers
The	“Dialog	Controller”	controls	the	inner	workings	and	flow	of	each	dialog	
thread.	Also,	we	can	define	whether	a	particular	Dialog	will	auto-play	when	it	is	
loaded	in	the	scene	(great	for	one-shot	loading	of	prefabs!)	or	whether	it	will	
remain	idle	until	it	is	told	to	play	via	a	script	(useful	for	RPG	type	games	for	
example	where	characters	can	re-use	the	same	dialogs).	Also,	there	is	a	“Sort	
Dialog”	button	which	allows	for	the	re-ordering	of	your	Dialog	Screens	along	
with	a	handy	“+”	button	to	quickly	add	a	new	Dialog	Screen	to	the	thread.	

	

About Dialog Screens
The	“Dialog	Screen”	is	where	all	the	important	stuff	goes!	It	is	divided	into	4	tabs:	

	“Dialogs”	 for	setting	up	the	dialog	text,	actor	name,	icon	image,	audio	
playback,	etc.	Basically,	this	is	the	actual	content	of	the	dialog.	

“Navigation”	for	setting	up	the	flow	of	the	dialog	thread.	For	example,	will	this	
be	a	Yes/No	question	that	can	take	you	to	different	screens	or	will	this	be	a	
simple	dialog	that	moves	on	to	the	next	screen,	etc.	

	“Actions”	 to	easily	instantiate,	activate,	or	destroy	GameObjects	at	the	start	
or	end	of	a	screen.	Also	provides	access	to	special	actions	to	control	Background	
and	Actor	layers,	custom	audio	channels,	LDC	Tokens	and	more!		

“Localize”	 to	easily	localize	each	dialog	screen	in	different	languages.	

Dialog	Controller	 Dialog	Screen	Dialog	UI	

	 Localized	Dialog	System	for	Unity	–	Page	14	 	

About Dialog Localization
	

	

Introduction
	
LDC	is	heavily	integrated	within	an	easy	to	use	localized	environment.	The	
DialogLocalization	component	(found	attached	to	the	DialogUI	GameObject)	is	
what	handles	language	detection	and	setup	within	LDC	(it	can	also	be	easily	used	
within	your	own	scripts	too	–	check	the	common	scripts	section	for	examples!).	

The	first	part	the	DialogLocalization	component	handles	is	language	detection.	
Depending	on	which	language	is	detected,	the	appropriate	localized	text	will	
show	within	your	dialogs.	

Language Detection Modes
	
LDC	offers	two	different	ways	to	detect	Languages:	
	
Detect	System	Language	Mode	

The	first	method	is	the	“Detect	System	Language”	mode.	This	approach	uses	the	
runtime	operating	system	to	tell	LDC	which	language	is	being	used	and	will	
automatically	show	the	correct	language	-	assuming	you	have	allowed	it	within	
the	Supported	Languages	list	(see	the	Supported	Languages	section	in	this	
chapter	for	more	details).	

This	mode	is	great	for	simple	games	where	you	are	either	only	using	one	
language,	or	if	you	want	this	to	be	automatically	handled	and	hidden	from	the	
user.	LDC	handles	it	all	automatically	without	you	having	to	do	anything!	

Using	PlayerPrefs	Key	Mode	

The	second	method	allows	you	to	use	a	custom	PlayerPrefs	key	to	tell	LDC	which	
language	to	use.	This	allows	you	to	give	the	player	the	choice	of	which	language	
to	use	and	it	is	even	possible	to	set	the	language	within	the	Dialog	Screen	options	
at	any	point	during	runtime.	English	is	always	used	by	default.	

	 Localized	Dialog	System	for	Unity	–	Page	15	 	

This	mode	is	great	for	more	advanced	setups,	or	if	you	generally	want	to	give	the	
choice	to	Players	to	pick	their	language.	Another	example	is	this	PlayerPrefs	key	
will	be	available	in	Logic	Screens,	which	will	allow	you	to	make	conditional	logic	
based	on	what	language	is	being	used.	

Supported Languages
	
In	the	Supported	Languages	tab,	you	will	be	able	to	choose	which	additional	
languages	you	want	to	support	in		your	game.	

	

	

Simply	check	the	box	next	to	each	language	if	you	want	to	allow	your	game	to	
show	content	in	that	language.		

NOTE:	Make	sure	you	set	this	up	correctly	because	if	a	language	is	not	selected	in	
this	list	but	is	detected	by	LDC,	it	will	use	English	as	a	fallback.	This	is	because	
the	system	will	assume	you	do	not	want	to	support	that	language.	

IMPORTANT:	Yandex	has	now	removed	the	free	version	of	their	Translation	API	
so	in	order	to	activate	this	feature	you	will	now	need	to	purchase	and	enter	your	
own	commercial	Yandex	API	Key	in	the	Unity	Preferences	window:	

	 	

	 Localized	Dialog	System	for	Unity	–	Page	16	 	

Setting Up A Dialog Screen – Dialogs Tab
	

	

Introduction
	
The	Dialogs	tab	is	the	first	section	of	any	LDC	Dialog.	It	offers	an	easy	way	to	
choose	what	style	of	dialog	will	be	displayed,	as	well	as	setup	the	various	
properties	and	data	the	dialog	will	consist	of.		
	
These	properties	are	not	always	the	same.	They	are	dependent	on	the	selected	
“Dialog	Style”.		

	

Dialog Styles
	
Dialog	Styles	determine	the	“template”	of	the	UI	that	is	presented	to	the	user.	In	
the	current	release	of	LDC,	the	following	Dialog	Styles	are	available:	
		
Next	Button	
	
The	“Next	Button”	style	shows	the	user	a	simple	dialog	screen	with	a	portrait,	
one	line	of	header	text,	some	dialog	text,	and	an	automatically	localized	‘Next’	
button.	This	means	the	translations	for	the	button	will	be	implemented	
automatically	in	all	of	LDC’s	supported	languages	(even	Simplified	Chinese,	
Korean	and	Japanese).	
	
The	Next	button,	as	well	as	most	dialog	styles	also	allows	you	to	stream	audio	
from	your	Unity	Resources	folder,	which	makes	it	extremely	memory	efficient	-
especially	on	mobile	builds	(you	also	have	options	to	play	an	AudioClip	directly	
using	the	Actions	tab).	
	
Yes	Or	No	
	
Similar	to	the	“Next	Button”	style	but	offers	automatically	localized	“Yes”	and	“No”	
buttons	to	navigate	with.	
	
	One	Button	
	
The	“One	Button”	style	is	a	custom	version	of	the	“Next	Button”.	Not	only	can	you	
rename	the	button	label	but	you	can	also	apply	a	custom	image	of	animation	to	
be	used	as	a	button	icon.	

	 Localized	Dialog	System	for	Unity	–	Page	17	 	

Two	Buttons	
Similar	to	the	“One	Button”	style	but	offers	two	custom	buttons.	
	
Multiple	Buttons	
The	“Multiple	Buttons”	style	is	a	very	powerful	screen	and	offers	a	vertical	list	of	
buttons	that	are	incredibly	flexible.	It	can	be	used	for	multiple-choice	answers,	as	
an	in-game	menu,	or	even	a	simple	inventory	or	merchant	screen.			
The	Multiple	Buttons	style	also	allows	you	to	add	‘Conditions’	to	make	buttons	
appear	only	if	a	set	of	events	are	true.	For	example,	you	can	show	a	button	called	
“Complete	Quest”	only	if	the	LDC	Token	named	“QuestCompleted”	equals	“1”.	
	
See	“Logic	screen”	(the	next	chapter)	for	more	info	about	how	the	‘Visual	Logic’	
system	works.	
	
Data	Entry	

“Data	Entry”	screens	are	designed	to	pull	data	from	a	user	as	easily	store	it	into	
an	LDC	Token.	The	value	of	these	tokens	can	then	be	re-used	in	later	dialogs	or	
even	in	Visual	Logic	(e.g.	grabbing	the	player’s	name	and	then	using	it	in	dialogs).	

The	Data	Entry	style	offers	you	the	ability	to	define	it	position	on	screen	using	
anchors	(top,	middle,	bottom),	which	Token	to	save	the	data	into,	what	format	it	
is	(Text	or	Number),	a	character	limit,	and	a	default	value	for	the	input	field.	You	
can	of	course	rename	the	button	and	add	a	custom	icon.	

Password	

To	the	user,	the	“Password”	screen	looks	very	similar	to	the	Data	Entry	screen.	
However,	under	the	hood	there	is	a	large	difference.	The	Password	style	is	
designed	to	take	the	user’s	input	and	compare	it	to	either	an	LDC	token	or	a	pre-
defined	string	of	text.		

The	style	offers	you	the	ability	to	position	the	GUI	with	the	same	anchors	as	the	
Data	Entry	style,	make	the	comparison	case-sensitive,	as	well	using	a	password	
mask	(using	***	in	place	of	the	real	text).	It	also	inherits	many	of	the	standard	
features	such	as	custom	button	labels,	icons	and	audio	options.	

Logic	

The	Logic	style	is	the	only	dialog	style	that	does	not	reflect	in	the	GUI.	See	the	
next	chapter	to	learn	all	about	the	Visual	Logic	system	in	LDC!	

Title	

The	“Title”	dialog	style	allows	you	to	create	interesting	Title	sequences.	
Depending	on	how	you	have	setup	the	GUISkin,	you	can	create	full	screen	text	
snippets	(great	for	visual	novels),	credits,	game	titles	and	more.	

You	can	set	text	for	your	title	and	subtitle,	position	them	with	pixel	accuracy	
using	X	and	Y	values,	as	well	as	setting	their	generic	colours.	A	single	button	is	
also	available	for	navigation,	as	it	the	default	audio	options.		

	 Localized	Dialog	System	for	Unity	–	Page	18	 	

Popup	

The	“Popup”	dialog	style	is	new	to	LDC	v4.0	and	allows	you	to	create	very	
diverse	popup	messages	/	windows.	You	can	change	the	size	of	the	popup,	add	
custom	animated	backgrounds	and	buttons,	as	well	as	the	option	of	having	one	
or	two	buttons.	This	is	great	for	asking	the	user	to	verify	a	choice,	a	tutorial	
screen,	or	even	an	in-app	purchase	screen.	

Icon	Grid	

The	“Icon	Grid”	dialog	style	is	a	powerful	new	dialog	style	in	LDC	v4.2.	You	can	
setup	a	window	with	a	scroll	view	to	display	a	custom	layout	of	icons.	This	
screen	is	well	suited	for	merchant	screens,	inventories,	Level	Selects,	and	much	
more!	

	

Dialog Properties
	

Here	is	reference	list	of	the	properties	you	will	find	in	the	Dialogs	tab,	along	with	
a	brief	explanation.	

	

Dialog	ID:	 This	ID	is	used	to	identify	this	specific	dialog	screen.	You	should	
make	sure	that	each	Dialog	Screen	has	a	different	ID	on	this	GameObject.	

Dialog	Note:	 (Yellow	Field)	Keep	track	of	long	dialog	threads	by	adding	a	note.	
The	checkbox	next	to	this	field	enables	“Auto-Notes”.	This	feature	creates	a	
dynamic	note	based	on	the	title	and	text	of	each	dialog	screen.	Very	useful	for	
keeping	track	of	which	dialog	you	are	working	on	in	different	tabs!	

Dialog	Style:	Selects	the	Dialog	Style	of	the	current	dialog	screen.	

Portrait:	 The	portrait	allows	you	to	setup	an	actor	or	an	icon	to	be	displayed	
with	many	types	of	dialog	styles.	If	you	have	setup	the	Dialog	Cast	(see	the	Dialog	
Library	section	for	more	info),	you	will	be	able	to	select	animations	as	well	as	
images	using	the	“View	Cast”	button.	

View	Cast:	 Opens	the	library	to	select	an	actor	to	be	used	as	a	portrait!		

No	Portrait:	 Removes	any	selected	image	or	animation	from	an	image	slot.		

No	Anim:	 Removes	the	animation	from	an	image	slot,	but	attempts	to	
capture	its	first	frame	as	a	static	image.	

Title/Name:	 A	title	or	the	name	of	an	Actor	should	be	typed	here	in	English	(the	
default	localization).	You	may	also	leave	this	blank.	

Dialog	Text:	 This	is	used	to	write	the	actual	text	you	would	like	to	display	to	the	
user.	In	this	field,	you	should	use	the	default	“English”	localization.	

	 Localized	Dialog	System	for	Unity	–	Page	19	 	

Custom	Button	Labels:	 These	will	appear	if	you	are	using	any	Dialog	Style	
that	requires	one	or	more	Custom	Buttons.	Here	you	should	rename	your	
buttons	(in	English).	You	may	also	choose	to	localize	them	in	the	“Localize”	tab.	

Custom	Button	Icons:	 Here	you	can	add	an	image	or	animation	to	a	button	
(NOTE:	You	need	to	setup	the	Dialog	Buttons	Library	to	apply	animations).	

Drop	AudioClip	To	Stream:	 You	can	drop	an	AudioClip	that	is	located	in	
your	Resources	folder	to	automatically	create	an	Audio	Filepath	(see	below).	LDC	
will	also	set	the	dialog	duration	to	the	length	of	the	clip	for	you.	If	the	AudioClip	
is	in	the	wrong	folder,	LDC	will	show	you	a	message	explaining	what	to	do!	

Audio	Filepath:	 This	is	the	audio	path	from	the	“Resources”	folder	of	your	
project.	This	helps	manage	memory	usage	by	only	loading	in	the	audio	clips	you	
need	at	runtime.		

eg,	if	you	had	an	audio	file	located	at	“Resources/Audio/NowYouSeeMe”,	you	would	simply	type	
“NowYouSeeMe”	in	the	field	as	there	is	an	audio	prefix	already	added	in	the	DialogUI	component.	

NOTE:	By	default	the	audio	prefix	in	the	DialogUI	component	is	set	to	“Audio/”	You	may	change	this	in	the	
inspector	but	it’s	recommended	to	keep	to	this	file	structure.	Also,	it’s	a	good	idea	to	make	sure	your	audio	isn’t	
set	up	as	a	3D	sound	in	Unity’s	import	settings!	

Use	Typewriter	Effect:	 Choose	whether	you	want	your	text	to	be	typed	
letter	by	letter	or	to	be	shown	all	at	once.	

Text	Scrolling	Options:	 Choose	whether	you	don’t	want	scrolling	(off),	
Automatic	scrolling	or	manual	scrolling	where	there	is	a	vertical	scrollbar	for	the	
user	to	manually	scroll	through	the	text.	

Audio	Pitch:	 	 Change	the	pitch	of	audio	when	it	is	being	played.	1.0	is	the	
default,	less	is	a	deeper	pitch,	and	greater	is	a	higher	pitch.		

Data	Entry:	 In	this	screen,	you	can	use	“Position”	to	anchor	the	GUI	to	the	
bottom	/middle	/	top	of	the	screen.	“Token	to	Set”	allows	you	to	choose	a	token	
to	save	the	data	in	to,	“Data	Format”	is	used	to	setup	the	data	as	a	number	or	text,	
and	finally	you	can	also	set	a	character	limit	to	control	the	length	of	the	data.	

Title:	 	 In	this	screen,	you	can	setup	the	name	of	the	title	and	subtitle	you	
want	to	display	by	adding	text	into	the	“Title”	and	“Subtitle”	fields.	You	can	
choose	exactly	where	to	place	the	text	using	the	“Position	X”	and	“Position	Y”	
fields,	and	set	the	color	of	the	text	with	the	relative	“Color”	fields.		

Popup:	 In	this	screen,	you	can	setup	the	name	of	the	title	and	dialog	text	in	
the	exactly	the	same	way	as	the	traditional	dialog	styles.	The	Popup	style	
differentiates	itself	from	the	other	by	allowing	you	to	setup	a	custom	size	for	the	
window	and	buttons	by	using	the	relevant	“size”	fields	as	well	as	choosing	a	
static	/	animated	background.	The	opacity	of	the	background	can	be	modified	
using	the	“Background	Alpha”	field.	Finally,	you	can	select	either	one	or	two	
buttons	to	be	visible	on	each	Popup	screen	using	the	“Options”	dropdown	menu.	

TITLE	/	POPUP	TIP:	Title’s	and	Popups	tend	to	look	a	lot	cooler	when	you	disable	the	background	UI	(by	
default	this	is	the	small	black	strip	at	the	bottom	of	the	interface).	You	can	easily	do	this	by	clicking	“Hide	UI	
Background”	in	the	Navigate	tab!	

	 Localized	Dialog	System	for	Unity	–	Page	20	 	

Setting Up A Dialog Screen – The “Title” Dialog Style
	

	

	

The	title	screen	is	the	perfect	screen	to	use	if	you	want	to	build	credits,	
introductions	or	story	segments.	It	allows	you	to	independently	setup	both	the	
title	and	the	subtitle	and	place	it	exactly	where	you	want	it	on	the	screen.	Use	the	
“Position	X/Y”	fields	to	place	the	text	on	the	screen	at	those	pixels.	The	“Area	Size	
X/Y”	fields	allow	you	to	set	how	you	want	to	crop	your	text.	

You	can	have	the	system	use	a	specific	font	by	using	the	“Override	Subtitle	/	Title	
Font”	fields	which	is	great	because	it	means	you	don’t	have	to	modify	your	
GUISkins!	The	text’s	default	size	can	be	changed	by	using	the	“Subtitle	/	Title	
Font	Size”	fields.	Text	alignment	is	also	customizable	by	using	“Sub/Title	Text	
Alignment”.	

The	default	colors	can	also	be	changed	using	the	Color	palletes.	

TITLE	TIP:	The	combination	of	scrolling	options	and	typewriter	effects	can	create	some	very	interesting	
sequences	for	your	projects!	

	

	 Localized	Dialog	System	for	Unity	–	Page	21	 	

Setting Up A Dialog Screen – The “Icon Grid” Dialog Style
	

	

Icon	Grids	have	the	usual	Title	and	Subtitle	fields	but	then	splits	its	setup	
between	Window	Options	and	Icon	Layout.		

In	the	“Window	Options”	tab,	you	are	able	to	setup	various	settings	concerning	
the	layout	and	appearance	of	the	window.	Other	than	changing	the	size	of	the	
window,	you	can	offset	its	position	using	the	“Window	Offset	X/Y”	values.	The	
offset	is	applied	after	it	is	centered	on	screen	so	you	can	have	control	over	
placement	if	preferred.		As	the	Icon	Grid	style	also	contains	an	automatically	
generated	scrollable	content	layer	(called	a	“Scroll	View”),	you	can	also	set	the	
scroll	bars	to	be	turned	on/off	using	the	“Always	Show	X/Y	Scrollbar	option”.	
Note	that	if	your	icons	take	up	more	space	than	the	content	area,	the	scrollbar	
will	always	be	visible.	You	also	have	the	choice	to	hide	the	title	and	subtitle	areas	
of	the	window	(“Show	Title	/	Subtitle	Text”)	as	well	as	add	space	between	the	
title	area	and	the	content	area	(“Add	Space	Below	Titles”).	You	also	have	control	
over	the	background	so	you	can	hide	the	entire	window	panel,	apply	a	custom	
image	or	animation	as	the	background	and	set	its	opacity.	

	

	

The	“Icon	Layout”	tab	allows	you	to	setup	the	layout	of	the	icons	and	labels.	The	
most	obvious	settings	are	the	“Icon	Size	X/Y”	values	to	control	the	size	of	the	
buttons.	The	“Icons	Per	Row”	value	is	very	important	for	setting	the	layout	of	
your	Icon	Grid.	This	setting	refers	to	how	many	buttons	it	should	show	in	each	

	 Localized	Dialog	System	for	Unity	–	Page	22	 	

horizontal	line	before	drawing	the	next	row.	The	“Layout	Spacing”	field	allows	
you	to	add	space	around	the	icons	to	make	them	closer	together	or	further	apart.	
“Show	Button	Backgrounds”	hide	the	background	part	of	your	buttons	(note	this	
makes	keyboard	and	joystick	focusing	difficult	for	the	user	to	see).	You	can	also	
override	your	GUISkin’s	button	Image	Style	to	set	up	the	text	/	icon	relationship	
of	your	buttons.	Likewise	you	can	setup	the	ButtonAllignment	to	control	how	the	
content	inside	of	the	button	is	positioned.	Labels	can	be	turned	on	or	off	and	also	
a	custom	size	can	be	set	to	display	them.	Finally,	you	can	have	LDC	create	a	
“Close”	button	for	your	Icon	Grid	by	selecting	the	“First	Icon	Is	Close	Button”	
checkbox.	This	takes	the	first	custom	button	and	draws	it	in	the	format	of	a	close	
button	in	the	top	right	of	the	window.	A	custom	size	for	this	can	also	be	set	with	
the	“Close	Button	Size”	value.	

Finally,	conditional	logic	has	been	extended	for	Icon	Grids	(See	the	“Logic	
Screens”	section	for	more	about	how	logic	works	in	LDC).	On	each	button	you	
can	set	how	LDC	should	handle	conditional	buttons	that	fail.	You	can	hide	or	
disable	buttons	and	replace	their	labels.	This	is	great	for	situations	such	as	
merchant	screens	where	the	user	doesn’t	have	enough	virtual	currency	and	you	
want	to	reflect	some	information	back	to	the	user	(e.g.	“100	Credits”	become	
“Not	Enough	Credits!”).	

As	of	LDC	4.8.2,	you	can	also	handle	buttons	that	PASS	conditional	logic.	By	
default,	the	button	will	simply	be	visible	but	you	can	now	set	it	to	be	“disabled”	
instead.	This	allows	you	to	create	interfaces	such	as	read-only	lists.	

ICON	GRID	TIP:	Icon	Grids	tend	to	look	a	lot	cooler	when	you	disable	the	background	UI	(by	default	this	is	the	
small	black	strip	at	the	bottom	of	the	interface).	You	can	easily	do	this	by	clicking	“Hide	UI	Background”	in	the	
Navigate	tab!	

	 	

	 Localized	Dialog	System	for	Unity	–	Page	23	 	

Setting Up A Dialog Screen – The “Logic” Dialog Style
	

The	purpose	of	the	Logic	screen	is	to	
allow	the	system	to	make	a	dynamic	
decision	based	on	the	value	of	LDC	
Tokens	or	Unity’s	PlayerPrefs.	The	
result	of	this	decision	will	instantly	
move	you	to	a	different	screen.	This	is	
the	only	Dialog	Style	in	the	system	that	
doesn’t	reflect	in	the	GUI,	it	acts	like	an	
intelligent	bridge	to	other	screens.	

You	can	add	as	many	logic	“Events”	as	
you	like	by	pressing	the	[+]	button	at	the	
end	of	the	list.	You	will	be	presented	
with	4	elements	to	create	the	“condition”	
of	each	event:	

	

1)	Select	if	you	would	like	to	test	a	Token	or	a	PlayerPrefs	String,	Float	or	Int.	

2)	The	name	of	the	Token	/	PlayerPrefs	Key	to	test.	

3)	An	operator	to	test	with	(“Equals”,	“Is	Not”,	“Less	than”,	etc.)	

4)	A	number	or	some	text	to	compare	with.	

Lets	look	at	the	screenshot	above:	“Token,”	“TestToken”,	“Equals”,	“test”.	

This	condition	will	be	true	if	my	token	named	“TestToken”	had	previously	been	
set	with	a	value	of	“test”.	This	would	trigger	the	navigation	to	kick	in	and	in	this	
case,	we’d	move	to	screen	2.	

If	my	token	was	not	set	to	“test”	this	would	NOT	be	true,	and	the	system	would	
move	on	to	the	next	Event	and	repeat.	If	all	the	Events	fail,	then	the	system	will	
use	the	“Default”	screen.	In	programming	terms	this	would	be	the	“Else”	block.		

As	of	LDC	4.8.2,	we	can	also	control	HOW	the	screen	navigates	when	the	logic	has	
been	performed.	Rather	than	just	a	simple	“Move	To	Screen	X”	function,	we	can	
now	have	LDC	choose	from	a	random	range	between	2	numbers	(great	for	
creating	a	randomized	responses),	or	grab	the	numeric	value	of	a	token	and	use	
that	directly.	This	provides	a	huge	amount	of	flexibility	in	the	way	your	dialog	
screens	can	navigate	and	opens	up	some	very	interesting	possibilities.	

NOTES:	The	navigation	and	Action	tabs	are	unavailable	when	using	this	mode.	The	Multiple	
Choice	Dialog	Style	also	supports	“Conditional	Events”	on	each	button.	

	

	 Localized	Dialog	System	for	Unity	–	Page	24	 	

Setting Up A Dialog Screen – Navigate Tab
	

		

Main Options
	
Dialog	ID:	 	 	 This	ID	is	used	to	identify	this	specific	dialog	screen.	
You	should	make	sure	that	each	Dialog	Screen	should	have	a	different	ID	on	this	
GameObject.	

Next	/	Yes	/	No	/	X	Screen:	 These	fields	are	dynamic	and	reflect	the	type	of	
Dialog	Style	you	selected	in	the	Dialogs	tab.	These	require	a	Dialog	ID.	For	
example,	if	we	typed	“2”	in	the	Next	Screen	field,	the	Dialog	will	move	on	to	the	
screen	that	has	the	Dialog	ID	of	2	when	the	current	one	has	finished.		

NOTE:	Your	dialogs	do	not	have	to	move	in	a	linear	fashion	(1,2,3,4,etc.),	although	that	would	
probably	be	the	easiest	way	of	doing	it!	

Seconds	To	Show:	 	 how	long	should	this	dialog	play	before	moving	on	to	
the	next	screen	automatically?	This	should	be	set	to	the	same	amount	of	time	as	
the	audio	clip	being	played	(if	any).	On	Yes/No	screens,	this	field	is	ignored.	

Hide	Custom	UI	Button:	 If	this	is	checked,	the	system	will	hide	the	button	in	
this	dialog	screen	and	rely	on	“Seconds	To	Show”	instead.	This	takes	away	the	
user’s	ability	to	skip	this	screen.	

Hide	UI	Background:	 If	this	is	checked,	the	system	will	hide	UI	background	
(by	default	this	is	the	black	strip	at	the	bottom	of	the	UI)	for	this	screen.	

No	Portrait	Fade	In:	 If	this	is	checked,	the	portrait	will	not	play	the	fade-
in	transition	(works	well	if	the	same	portrait	was	used	in	the	last	screen).	

No	Portrait	Fade	Out:	 If	checked,	the	portrait	will	not	play	the	fade-Out	
transition	(works	well	if	the	NEXT	portrait	to	be	used	is	the	same	as	this	screen).	

Last	Dialog:	 	 	 If	this	is	checked,	the	whole	Dialog	UI	will	end	after	
this	screen	is	finished.	

Destroy	At	End:	 	 Only	visible	if	last	Dialog	is	set.	If	this	is	checked,	the	
GameObject	that	contains	this	dialog	thread	will	be	destroyed.	

NOTE:	You	should	usually	always	do	this,	especially	on	Auto-play	dialogs.	If	you	need	a	more	
complicated	setup	where	you	want	manual	control	over	destroying	the	dialogs,	leave	this	unchecked.	

	 Localized	Dialog	System	for	Unity	–	Page	25	 	

The Last Dialog
	
If	you	set	a	Dialog	screen	as	the	“Last	Dialog”,	new	options	will	become	available	
to	you.		
	
These	options	are	specifically	designed	to	help	you	link	different	dialogs	and	
scenes	together.	For	example,	you	can	split	up	very	large	dialogs	into	smaller	
ones	making	them	easier	to	manage,	or	change	to	a	different	Unity	scene	where	
another	dialog	is	set	to	Auto-Play,	etc.	
	

	

Restart	Level	At	End:	 	 As	soon	as	the	dialog	fades	out,	the	current	
Unity	scene	will	be	restarted.	

Load	Level	At	End:	 	 	 As	soon	as	the	dialog	fades	out,	the	system	
will	attempt	to	load	a	level	with	the	name	typed	into	this	field.	

Create	Dialog	From	Prefab:	 As	soon	as	the	dialog	fades	out,	a	prefab	will	
be	loaded	into	the	scene	(You	should	make	sure	this	is	an	LDC	Dialog	prefab	set	
to	‘Auto-Play’).	

Find	And	Play	This	Dialog:	 As	soon	as	the	dialog	fades	out,	the	system	
will	attempt	to	find	and	play	another	LDC	dialog	already	in	the	scene	with	the	
name	you	have	typed	in	this	field.	

Use	A	Different	Start	ID:	 	 Allows	you	to	override	the	default	start	ID	of	
the	new	dialog	thread	(so	you	can	jump	to	a	specific	screen	within	a	new	dialog).		

	 Localized	Dialog	System	for	Unity	–	Page	26	 	

Navigation Callbacks
	
As	of	LDC	v4.0,	you	have	the	option	to	create	Navigation	Callbacks	from	the	
inspector	itself.	

	

Navigation	callbacks	allow	you	to	send	information	about	what	button	the	user	
just	pressed	to	an	external	GameObject	using	SendMessage.	

GameObject	To	Find:	 Enter	the	name	of	the	GameObject	that	will	receive	
the	callback.	LDC	will	automatically	find	it	in	the	scene	for	you	at	runtime.	

Function	Name:	 	 The	name	of	the	function	/	method	that	will	receive	
the	message.	This	function	should	accept	a	String[]	argument.	

String	Argument:	 	 An	additional	string	that	is	sent	with	the	other	data.	

	

NOTES:	

The	callback	sends	a	built-in	String[]	array	using	SendMessage.	The	example	
below	demonstrates	how	to	catch	the	function.	

function	MyFunction(args	:	String[]){	

var	ldcObjectName	:	String	=	args[0];	 //	The	name	of	the	LDC	Dialog	

var	dialogID	:	int	=	int.Parse(args[1]);	 //	The	Dialog	ID	of	the	current	screen	

var	buttonID	:	int	=	int.Parse(args[2]);	 //	The	button	ID	of	the	selected	button	

var	buttonName	:	String	=	args[3];	 //	The	name	of	the	selected	button	

var	customString	:	String	=	args[4];	 //	The	custom	string	

}	 	

	 Localized	Dialog	System	for	Unity	–	Page	27	 	

Setting Up A Dialog Screen – Actions Tab (GameObjects)
	

	

Dialog	ID:	 	 	 This	ID	is	used	to	identify	this	specific	dialog	screen.	
You	should	make	sure	that	each	Dialog	Screen	should	have	a	different	ID	on	this	
GameObject.	

Create	Objects	At	Start/End:	 Used	to	create	a	list	of	prefabs	in	the	scene	at	
the	start/end	of	this	Dialog	Screen.	

Activate	Objects	At	Start:	 Used	to	activate	a	list	of	GameObjects	in	the	scene	at	
the	start/end	of	this	Dialog	Screen.	This	only	works	if	your	dialog	is	NOT	a	prefab.	

Find	And	Activate	Objects	At	Start/End:	 Used	to	activate	a	list	of	
GameObjects	in	the	scene	at	the	start/end	of	this	Dialog	Screen	by	searching	for	
them	by	name.	This	method	is	recommended	as	no	direct	references	are	used.	

De-Activate	Objects	At	Start/End:	 Used	to	de-activate	a	list	of	
GameObjects	in	the	scene	at	the	start/end	of	this	Dialog	Screen.	This	only	works	
if	your	dialog	is	NOT	a	prefab.	

Find	And	De-Activate	Objects	At	Start/End:	 Used	to	de-activate	a	list	of	
GameObjects	in	the	scene	at	the	start/end	of	this	Dialog	Screen	by	searching	for	
them	by	name.	This	method	is	recommended	as	no	direct	references	are	used.	

Send	Message	At	Start/End:	 Used	to	send	a	message	with	an	optional	
argument	to	another	GameObject.	This	triggers	a	function	in	that	GameObject.	
You	can	use	this	to	effortlessly	connect	with	different	scripts	without	scripting!	

Destroy	Objects	At	Start/End:	 	 Used	to	destroy	a	list	of	GameObjects	
at	the	start/end	of	this	Dialog	Screen.	Only	works	if	your	dialog	is	NOT	a	prefab.	

Find	And	Destroy	Objects	At	Start/End:		 Used	to	find	a	list	of	
GameObjects	by	name	and	destroy	them	at	the	start/end	of	this	Dialog	Screen.	

	 Localized	Dialog	System	for	Unity	–	Page	28	 	

Setting Up A Dialog Screen – Actions Tab (Background)
	

	

NOTE:	Unlike	most	settings	in	the	Dialog	Screen,	Background	and	Actor	Layers	are	
global	to	the	DialogUI	object	and	do	not	only	affect	the	current	screen.	Changes	
made	to	a	particular	layer	will	stay	persistent	until	the	DialogUI	is	closed	or	until	
you	specifically	tell	that	layer	to	fade-out	or	hide.	

Dialog	ID:	 	 	 This	ID	is	used	to	identify	this	specific	dialog	screen.	
You	should	make	sure	that	each	Dialog	Screen	should	have	a	different	ID	on	this	
GameObject.	

Fade	Out	All	Layers:	 Causes	all	layers	to	fade	out	and	be	reset	by	the	next	
screen.	

Lyr	X:	 	 	 	 Clicking	on	a	checkbox	next	to	a	layer	tells	the	
system	you	will	be	setting	up	a	layer	action	on	this	screen	(the	options	will	open	
up	underneath	to	reflect	this)	

Scenes:	 	 	 Used	to	select	a	scene	from	the	library.	If	the	Dialog	
Library	isn’t	in	the	scene,	this	button	will	not	be	available.	

Scale	Mode:	 	 	 Uses	Unity’s	built-in	scale	functions	to	scale	up	your	
image	to	full	screen.	

Display:	 	 	 Fade	In	/	Fade	Out	will	transition	the	layers	in	or	out.	
Show	will	instantly	show	the	layer,	and	Hide	will	immediately	hide	the	layer.	

	

	

	

	 Localized	Dialog	System	for	Unity	–	Page	29	 	

Setting Up A Dialog Screen – Actions Tab (Actors)
	

	
NOTE:	Unlike	most	settings	in	the	Dialog	Screen,	Background	and	Actor	Layers	are	global	to	the	
DialogUI	object	and	do	not	only	affect	the	current	screen.	Changes	made	to	a	particular	layer	will	
stay	persistent	until	the	DialogUI	is	closed	or	until	you	specifically	tell	that	layer	to	fade-out	or	hide.	

Dialog	ID:	 	 	 This	ID	is	used	to	identify	this	specific	dialog	screen.		

Fade	Out	All	Layers:	 Causes	all	layers	to	fade	out	and	be	reset	by	the	next	
screen.	

Lyr	X:	 	 	 	 Clicking	on	a	checkbox	next	to	a	layer	tells	the	
system	you	will	be	setting	up	a	layer	action	on	this	screen	(the	options	will	open	
up	underneath	to	reflect	this)	

Cast:	 	 	 	 Used	to	select	an	Actor	from	the	library.	If	the	Dialog	
Library	isn’t	in	the	scene,	this	button	will	not	be	available.	

Display:	 	 	 Fade	In	/	Fade	Out	will	transition	the	layers	in	or	out.	
Show	will	instantly	show	the	layer,	and	Hide	will	immediately	hide	the	layer.	

Size	In	%:	 	 	 Scales	the	image	as	a	percentage.	

Position:	 	 	 Anchors	the	image	to	a	position	of	the	screen	(eg,	
top,	bottom-left,	middle,	etc.)	

Offset:		 	 	 Pixel	offset	of	the	position	anchor.	

Motion	From:	 	 Used	to	make	motion	transitions	from	the	top,	left,	
right	or	bottom.	Fading	out	will	make	the	image	move	towards	that	point.	

	 Localized	Dialog	System	for	Unity	–	Page	30	 	

Setting Up A Dialog Screen – Actions Tab (Audio)
	

	
NOTE:	You	can	select	a	custom	audio	channel	(separate	from	the	main	speech	channel	found	on	the	
main	Dialogs	screen)	to	apply	Audio	Actions	to.	

Dialog	ID:	 	 	 This	ID	is	used	to	identify	this	specific	dialog	screen.	
You	should	make	sure	that	each	Dialog	Screen	should	have	a	different	ID	on	this	
GameObject.	

Action:	 	 	 None,	Play,	Fade	In	And	Play,	Fade	Out,	Stop.	

Load	From	Filepath:	 Allows	us	to	type	in	the	path	using	the	DialogUI	
prefix	(similar	to	the	main	screen).	This	is	better	for	dealing	with	low	RAM	
situations.	

Audio	Clip	/	Path:	 	 Either	the	AudioClip	or	the	Filepath	depending	on	
what	was	selected	in	“Load	Audio	From	Filepath”	

Volume:	 	 	 1	being	the	loudest.	

Pitch:	 	 	 	 1	being	the	default	(normal)	pitch.	

Loop:	 	 	 	 Should	we	loop	this	audio?	

Fade	Duration:	 	 How	long	should	the	audio	fade	take	in	seconds?	

	

	

	

	

	

	

	

	 Localized	Dialog	System	for	Unity	–	Page	31	 	

Setting Up A Dialog Screen – Actions Tab (Tokens & PlayerPrefs)
	

	
NOTE:	In	this	screen	you	can	create,	edit	or	delete	PlayerPrefs;	easily	setup	LDC	Tokens;	and	
perform	File	Management	routines	to	save,	load	or	delete	your	Tokens.	You	can	create	a	list	of	token	
or	PlayerPrefs	actions	by	clicking	the	green	“+”	button.	Remove	the	last	item	in	the	list	by	clicking	
the	red	“-”	button.	

About PlayerPrefs and LDC Tokens
	
As	of	LDC	v3.5,	Unity	PlayerPrefs	are	now	deeply	integrated	into	the	system.	It	is	
important	to	understand	the	advantages	of	using	PlayerPrefs	and	LDC	Tokens	to	
store	data.	
	
Generally,	if	you	don’t	need	to	use	PlayerPrefs	you	should	stick	with	LDC	Tokens.	
They	are	‘Typeless’	(ie,	they	are	not	strict	Strings,	Floats,	Ints,	etc.)	making	them	
easier	to	manage;	they	can	be	easily	injected	into	your	dialog	text	(see	the	
Tokens	section	for	more	info!),	and	can	be	effortlessly	localized	within	LDC	to	
support	different	values	depending	on	system	language.	
	
That	doesn’t	mean	to	say	PlayerPrefs	are	not	useful.	In	some	cases	you	may	be	
using	other	plugins	or	your	own	scripts	that	were	relying	on	PlayerPrefs	to	store	
keys	relevant	to	your	game.	For	example,	if	your	character	completed	a	quest	in	
an	RPG	game,	if	they	have	reached	a	certain	area	or	level,	etc.	LDC	Allows	you	to	
set,	edit	and	test	these	keys	opening	up	a	lot	of	possibilities	when	working	
between	scripts	and	different	systems.	Also	note	that	LDC	can’t	inject	the	keys	
from	PlayerPrefs	into	dialogs	directly,	nor	can	they	be	localized.	
	
So	in	conclusion,	it	is	recommended	to	use	Tokens	for	things	like	“PlayerName”,	
“Age”,	“Currency”,	anything	that	you	might	need	to	use	or	display	in	a	dialog	to	
the	player.	If	you	need	to	use	PlayerPrefs,	try	to	use	these	for	things	that	happen	
behind	the	scenes	such	as	“PlayerDiscoveredLevel2”,	“FoundGoldKey”,	
“HasSword”,	etc.		

	 Localized	Dialog	System	for	Unity	–	Page	32	 	

	

Setup Unity PlayerPrefs
	
Action:	 	 	 “Set	String	/	Float	/	Int”	creates	a	new	key	(or	
replaces	an	existing	key),	“Add	to	Float	/	Int”	adds	a	value	to	an	existing	key	(or	
creates	a	new	key	with	that	value	if	it	doesn’t	exist),	“Subtract	From	Float	/	Int”	
subtracts	a	value	from	an	existing	Key	(or	creates	a	new	key	if	it	doesn’t	exist.),	
“Delete	Key”	will	try	to	delete	a	specific	key,	and	“Delete	All	Keys”	will	delete	All	
Keys	from	PlayerPrefs.	

Token:	 	 	 The	name	of	the	PlayerPrefs	Key	we	should	apply	
this	action	to.	NOTE:	If	you	are	using	“Save	Prefixes”	in	DialogUI,	this	will	be	
automatically	added	to	the	beginning	of	the	Keys	here.	

Value:		 	 	 Used	as	an	argument	to	the	current	Action.	

Setup LDC Tokens
	
Token:	 	 	 Which	token	should	we	apply	this	action	to?	

Action:	 	 	 Set	replaces	a	token,	Add	and	Subtract	attempts	to	
treat	this	token	like	a	number	and	apply	simple	math	using	the	Value	field.	

Value:		 	 	 Used	as	an	argument	to	the	current	Action.	If	“Set”	is	
selected,	the	value	will	simply	replace	the	old	one,	if	“Add”		is	selected,	then	it	
will	attempt	to	Add	the	“Value”	to	the	existing	Token.	

Localize	(Globe	Icon):	 Apply	a	localized	Value.	

Localized	Values:	 	 We	can	apply	different	values	depending	on	what	
language	is	currently	selected.	

	

File Management
	
File	Management:	 	 We	can	easily	choose	to	save,	load	or	delete	our	
Tokens	to	PlayerPrefs	using	the	currently	selected	‘Save	Prefix’.	Take	a	look	at	
the	File	Management	for	more	info!		

	 Localized	Dialog	System	for	Unity	–	Page	33	 	

Setting Up A Dialog Screen – Actions Tab (Localization)
	

	

In	this	screen	it	is	possible	to	change	LDC’s	language	and	GUISkin.	

	

Set	New	Dialog	Language:	 	 	 AutoDetect	will	use	the	chosen	
detection	system	in	DialogLocalization	in	order	to	detect	the	language.	The	other	
language	choices	will	select	that	language	directly.	

NOTE:	Changing	the	language	using	this	action	will	also	automatically	set	the	
PlayerPrefs	string	that	has	been	setup	in	DialogLocalization	(if	you	have	selected	to	
use	the	PlayerPrefs	Key	detection	mode).	

	

Also	Update	The	GUISkin:	 	 	 Automatically	reloads	LDC’s	GUISkin	
to	use	the	settings	setup	in	the	DialogOnGUI	component.	

	

	 Localized	Dialog	System	for	Unity	–	Page	34	 	

Setting Up A Dialog Screen – Actions Tab (3rd Party / uSequencer)
	

	
NOTE:	The	developer	of	uSequencer	and	I	have	teamed	up	to	provide	out	of	the	box	integration	
between	both	of	our	tools.	Now	you	can	easily	control	sequences	directly	from	LDC	using	the	easy	to	
use	intuitive	editors	that	you’re	used	to!	

uSequencer	GameObject:	 	 You	can	drag	the	sequence	into	this	slot	if	
your	Dialog	is	not	setup	as	a	prefab.	(Use	Find	By	Name	if	it	is!)	

OR	Find	By	Name:	 	 	 Access	the	sequencer	by	typing	in	the	name	
of	the	GameObject.	(Perfect	if	you	are	using	a	prefab!)	

Setup	Sequence:	 	 Opens	up	some	extra	options	to	set	up	the	sequence.	

Set	Playback	Time:	 	 Set	the	playback	time	of	the	sequence.	

Set	Playback	Rate:	 	 Set	the	playback	rate	of	the	sequence.	

Perform	this	action	at	the	start	/	End	of	the	Dialog	Screen:	 	 	

Trigger	a	function	to	Play	/	Pause	/	Stop	/	Skip	the	sequence	when	the	dialog	
screen	first	appears,	or	when	it	ends.	

	

	

	

	

	

	

	

	 Localized	Dialog	System	for	Unity	–	Page	35	 	

Setting Up A Dialog Screen – Actions Tab (3rd Party / RT-Voice)
	

	
NOTE:	Now	LDC	can	setup	voice	profiles	and	have	RT-Voice	speak	your	dialog	text	with	text-to-
speech!	Please	note	that	RT-Voice	only	works	on	Mac	and	Windows	standalone	builds.	

RT-Voice	Actions:	 	 Choose	to	say	the	title,	the	dialog	text,	the	title	and	
the	dialog	text,	or	to	silence	all	voices.	

Select	A	Voice:	 	 Select	A	Voice	that	you	have	already	setup	in	the	
DialogUI	component:	

Setting	Up	Voice	Profiles	For	RT-Voice:	
	

	
	
Inside	DialogUI	>	3rd	Party	>	RT-Voice,	you	can	create	new	voices	that	the	
system	can	use.	
	
For	each	voice	you	create,	you	will	notice	a	corresponding	name	will	be	available	
in	the	Dialog	Screens.		
	
Each	voice	must	have	an	RT-Voice	culture	code	and	a	voice	ID	(which	can	be	
different	on	both	mac	and	windows).	
	
You	can	also	select	options	that	limit	a	specific	voice	to	speaking	only	if	it’s	in	the	
Editor,	or	if	an	existing	AudioClip	hasn’t	been	setup	in	a	Dialog	Screen.	
	

	 Localized	Dialog	System	for	Unity	–	Page	36	 	

Setting Up A Dialog Screen – Localize Tab
	

	

Dialog	ID:	 	 	 This	ID	is	used	to	identify	this	specific	dialog	screen.	
You	should	make	sure	that	each	Dialog	Screen	should	have	a	different	ID	on	this	
GameObject.	

Select	Language:	 	 Used	to	select	a	localization	language.	

English/Translation:	 The	English	fields	of	the	Dialog	screen	are	
conveniently	placed	on	the	left	so	you	can	type	in	the	active	translation	on	the	
right.	

Override	Audio:	 	 Check	this	if	you	have	localized	audio	files	too.	

New	Audio	Filepath:	 Type	in	the	filepath	to	the	localized	audio	file.	You	
should	use	the	same	format	as	the	“Audio	Path”	in	the	Dialogs	tab.	

Pitch:	 	 	 	 Used	to	choose	a	new	audio	pitch	for	the	localized	
audioclip.	

Custom	Buttons:	 	 Your	custom	button	names	will	appear	here	also	if	
they	have	been	setup.	

Custom	Tokens:	 	 Your	custom	button	names	will	appear	here	also	if	
they	have	been	setup.	

Translate	To	X:	 	 Allows	you	to	automatically	translate	your	English	
text	to	the	selected	Language	on	this	screen.	NOTE:	Chinese,	Korean	and	
Japanese	are	not	currently	supported.	

Translate	All:	 	 Allows	you	to	automatically	translate	your	English	
text	to	ALL	supported	languages	on	this	screen.	NOTE:	Korean	and	Japanese	
translations	are	currently	in	beta.	

NOTE:	Please	note	a	commercial	Yandex	API	key	is	required	to	use	this	feature.	
When	using	Automatic	Translations,	it	is	important	to	not	change	the	selected	
GameObject	in	the	Hierarchy	until	the	translation	routine	has	finished.	This	will	
cause	the	LDC	inspector	to	close	abruptly	and	interrupt	your	connection	to	the	
translation	servers!	

	 Localized	Dialog	System	for	Unity	–	Page	37	 	

Dialog Library / Cast, Scenes, and Buttons
	 	

The	“Dialog	Library”	GameObject	consists	of	the	“Dialog	Cast”,	“Dialog	Scenes”	
and	“Dialog	Buttons”	editor.	This	is	a	database	that	is	used	to	setup	the	graphics	
and	animations	used	in	your	Dialogs.	You	should	only	have	1	Dialog	Library	in	
each	scene,	and	it	should	most	definitely	be	saved	as	a	prefab	to	make	things	
easier!		

As	well	as	allowing	you	to	organize	your	graphics	and	animations	into	groups,	
the	easy	to	use	editors	allow	you	to	delete	entire	Cast	Groups	by	clicking	the	
outer	“-”	buttons,	or	add	new	ones	by	clicking	the	bottom	green	“+”	sign.	Also,	
individual	images/animations	can	be	added	and	deleted	in	the	same	way.	

	

Setting Up Animations
You	can	easily	set	up	animations	by	clicking	“Use	Animation”	and	then	adding	
frames	as	a	Texture2D	(Note:	They	should	all	be	the	same	size).	You	can	change	
the	animation	speed	by	moving	the	slider	left	and	right	and	also	tell	it	which	
frame	to	loop	back	to.	

					 	

Accessing the Cast from the Dialog Screen
If	the	appropriate	Library	is	available,	a	“View	Cast”	button	will	appear	by	the	
portrait	icon	in	the	Dialog	Screen,	the	custom	button	icon	fields,	and	also	under	
background	and	actor	layers.	Clicking	this	allows	you	to	easily	select	an	Actor	/	
Background	with	a	single	click!	

REMINDER:	If	you	are	going	to	use	this	feature,	you	should	save	the	Dialog	Library	GameObject	to	
a	prefab	and	use	that	in	every	scene	of	your	game.	This	will	make	sure	that	the	cast	remains	
available	at	all	times.	If	you	are	using	animations,	you	MUST	keep	this	prefab	in	the	scene!	

	 Localized	Dialog	System	for	Unity	–	Page	38	 	

Dialog UI - Settings
NOTE:	Info	about	Localized	Skins	can	be	found	in	“The	GUI”	section	of	the	documentation.	

	

	

Transitions
	
Fade	Duration:	 	 	 	 How	long	the	UI	transitions	are	in	seconds.	

Background	Fade	Duration:	 	 How	long	the	background	UI	takes	to	fade	in.	

Background	Fade	Override:	 	 Fade	speed	when	being	overridden	by	a	Dialog	Screen.	

Use	Portrait	Fades:	 	 	 Allow	the	portrait	/	icon	to	be	faded	in	/	out.	

Use	Button	Fades:	 	 	 Allow	the	UI	buttons	to	be	faded	in	/	out.	

Use	Text	Fades:		 	 	 Allow	the	UI	text	to	be	faded	in	/	out.	

Use	Portrait	Transitions:	 	 Allow	the	portrait	/	icon	to	tween	in	/	out.	

Use	Button	Transitions:	 	 Allow	the	buttons	to	tween	in	/	out.	

Default	Screen	Transitions:	 	 which	effect	should	be	considered	the	default?	

UI Options:
	

Title	Text	Shadows:	 	 	 Draws	a	shadow	for	the	Title	/	Actor	UI	Text.	

Body	Text	Shadows:	 	 	 Draws	a	shadow	for	the	main	body	UI	Text.	

Hide	Background	Image:		 	 Hides	the	main	background	element	from	the	UI.	

Hide	Choice	Panel	UI:		 	 	 Hides	the	background	behind	the	multiple-choice	UI.	

Hide	All	Text:		 	 	 	 Hides	all	text	elements	from	the	UI	(Not	Buttons).	

Hide	Title	Text:		 	 	 Hides	all	actor	names	and	titles	from	the	UI.	

Hide	Body	Text:		 	 	 Hides	all	main	dialog	text	from	the	UI.	

Hide	All	Single	Buttons:		 	 Hides	all	single	buttons	from	the	UI.	

	 Localized	Dialog	System	for	Unity	–	Page	39	 	

Ignore	All	Dialog	Duration:		 	 Ignores	the	timeout	of	single	button	dialogs.	Requires	
the	user	to	press	a	button	to	progress	to	the	next	screen.	

Resize	Text	Without	Portraits:		 	 Widens	the	text	area	of	the	UI	if	no	portraits	are	setup.	

Fade	Out	When	Screen	Ends:		 	 Fades	out	speech	audio	when	a	screen	ends.	

Stop	Audio	When	Screen	Ends:			 When	an	individual	screen	ends,	audio	is	stopped	early.	

Stop	Audio	If	Dialog	Ends:		 	 Stops	any	LDC	speech	from	playing	when	a	dialog	ends.	

	

Text Effects:
	

By	Default,	Scrollable	Text	is:		 	 Default	scrollable	text	setting.	

Automatic	Scrolling	Speed:		 	 Default	speed	for	automatic	scrolling	text.	

Reduce	Scroll	Area	Height:	 		 Clips	extra	space	from	the	bottom	of	the	text.		

Tap	To	Scroll	Manually:	 		 If	a	user	clicks	/	taps	on	an	Automatic	Scrolling	Next	
Dialog,	the	functionality	will	change	to	Manual	Scrolling.		

Use	Typewriter	By	Default:		 	 Text	is	displayed	1	character	at	a	time	like	a	typewriter	
by	default.	

Typewriter	Effect	Speed:		 	 how	fast	each	character	is	displayed.	

Finish	Early	On	User	Input:	 		 	If	a	user	clicks	the	mouse	or	touches	the	screen,	the	
typewriter	will	immediately	complete.	

Play	Typewriter	AudioClip:		 	 Plays	an	AudioClip	during	Typewriter	effects.	

	

Input Options:
	

Select	GUI	Button	/	Item	With	These	Keycodes:		Allows	you	to	setup	keyboard	/	joystick	keys	
to	select	buttons	in	the	UI.	Simply	choose	from	one	of	the	KeyCodes	in	the	dropdown	menu.	

Focus	Next	GUI	Button	/	Item	With	These	Keycodes:		 Allows	you	to	setup	keyboard	/	
joystick	keys	to	focus	the	next	UI	element.	Simply	choose	from	one	of	the	KeyCodes	in	the	
dropdown	menu.	

Focus	Previous	GUI	Button	/	Item	With	These	Keycodes:		 Allows	you	to	setup	keyboard	
/	joystick	keys	to	focus	the	previous	UI	element.	Simply	choose	from	one	of	the	KeyCodes	in	the	
dropdown	menu.	

Focus	GUI		Buttons	/	Items	With	These	Axes:		 Allows	you	to	use	an	input	axis	already	setup	
in	Unity’s	Input	pane	to	select	buttons	in	the	UI.	Type	the	name	of	the	axis	and	select	if	you	want	
to	invert	it.	

Play	When	Button	Is	Selected:		 	 Plays	an	AudioClip	when	a	GUI	item	is	selected.	

Play	When	Focus	Changes:		 	 Plays	an	AudioClip	when	the	GUI	focus	changes.	

	

File Management Options:
	
NOTE:	For	more	information	about	File	Management	and	how	it	works,	please	refer	to	the	full	“File	
Management”	section	found	later	in	the	documentation.	

Use	Global	Tokens:	 	 	 Tokens	will	be	persistent	across	different	levels.	

Use	File	Management:		 	 	 File	Management	is	enabled.	

	 Localized	Dialog	System	for	Unity	–	Page	40	 	

Load	Tokens	On	Awake:		 	 Tokens	are	automatically	loaded	on	Awake().	

Save	Tokens	On	Destroy:		 	 Tokens	are	automatically	saved	on	Destroy().	

Save	Tokens	On	Pause:			 	 Tokens	are	automatically	saved	OnApplicationPause().	

	

Audio	Filepath	Prefix:		 This	is	a	way	of	shortening	all	of	the	audio	file	paths	from	the	Dialogs	
tab.	This	string	is	put	in	front	of	all	audio	file	paths.	
Example:	Let’s	assume	you	had	an	audio	file	located	at	Resources/Audio/Speech/No.wav.	If	you	changed	
the	prefix	to	“Audio/Speech/”	all	you’d	need	to	type	in	as	the	Audio	file	path	in	the	Dialogs	tab	is	"No",	and	it	
should	work	fine!	

	

Miscellaneous:
	

Debug	System	Messages:	 	 Allow	LDC	to	show	important	system	messages	in	the	
Unity	Console.	

Debug	Action	Messages:	 	 Allow	LDC	to	show	messages	relating	to	LDC	actions	in	
the	Unity	Console.	

Debug	Logic	Messages:	 	 	 Allow	LDC	to	show	messages	relating	to	logic	screens	
and	the	processing	of	tokens	in	the	Unity	Console.	

	

	

	 Localized	Dialog	System	for	Unity	–	Page	41	 	

$Token Injectors
	
Tokens	are	simple	variables	in	the	system	that	can	be	used	to	store	information	
like	the	player’s	name,	age,	inventory,	status,	etc.	It	can	also	be	used	very	easily	
in	conjunction	with	the	Data	Entry	Dialog	Style,	as	well	as	externally	using	the	
API	(see	the	common	scripts	page	for	examples!)	
	

	

How To Setup A Token
You	can	setup	Tokens	in	the	DialogUI	GameObject.	Open	the	Tokens	tab;	add	a	
new	entry	and	give	it	a	name.		You	can	also	choose	to	add	a	value	to	it	right	at	the	
start.	That’s	it!	You	now	have	a	token	you	can	use	to	store	data!	

In	the	example	above,	we’ve	setup	2	tokens,	1	called	“PlayerName”,	and	another	
called	“Age”.	“PlayerName”	has	a	value	of	“Mike”,	and	“Age”	has	a	value	of	18.	

NOTE:	Enabling	“Global	Tokens”	in	“Options”,	allows	changes	to	your	tokens	to	follow	you	across	
different	levels.	Make	sure	you	have	the	same	DialogUI	prefab	in	all	of	your	scenes	for	this	to	work!	
If	you	want	to	use	the	File	Management	features,	you	must	also	enable	Global	Tokens!		

	

How To Use A Token In A Dialog
You	can	easily	use	tokens	in	a	Dialog,	like	this:	

	
NOTE:	You	can	use	Tokens	in	the	Dialog	Text,	or	the	Title	in	the	exact	same	way!	

	 Localized	Dialog	System	for	Unity	–	Page	42	 	

As	you	can	see,	we’ve	written	the	token	name	“PlayerName”	in	the	dialog	but	we	
put	a	dollar	sign	“$”	in	the	front	of	the	text.	This	tells	the	system	to	replace	it	with	
the	value	of	the	token.	

The	UI	will	then	end	up	with	the	result:	

“Hi	Mike,	I’m	going	to	tell	you	a	very	short	story	..”	

NOTE:	If	a	token	could	not	be	found	in	the	Tokens	list,	the	system	will	simply	
ignore	it.	

	

	 Localized	Dialog	System	for	Unity	–	Page	43	 	

@Style Injectors
	

Style	Injectors	are	an	incredibly	easy	way	of	adding	rich	text	and	color	
animations	into	your	text!	You	set	them	up	in	a	similar	way	to	tokens.	You	create	
a	list	of	custom	styles	and	you	setup	the	properties	they	have	(colors,	bold,	italic,	
size,	etc).	In	fact,	LDC’s	Injectors	can	also	be	used	outside	of	the	system	too	with	
the	API!	You	can	inject	styles	and	tokens	into	any	string	that	supports	rich	text	
(including	Unity’s	new	uGUI	system!)	

Another	awesome	thing	about	injectors	are	how	easy	they	are	to	use.	Unlike	
other	tag	based	scripting	like	html	or	Unity’s	rich	text	markup	itself,	all	you	need	
to	do	is	add	the	“@”	symbol	and	your	injector	by	name	-	you	don’t	even	need	a	
closing	bracket!	LDC	generates	the	code	for	you	on	the	fly!	

How To Setup A Custom Style
	

	
	
You	can	add	new	style	inspectors	in	the	DialogUI	>	Styles	tab.	In	the	example	
above,	we’ve	setup	a	new	style	called	“YellowShine”.	We’ve	set	it	to	be	bold	and	
to	have	a	color	animation	making	it	blend	between	two	shades	of	yellow.	
	
NOTE:	You	should	always	keep	the	“Normal”	style	(this	is	explained	in	the	next	section).	

	 Localized	Dialog	System	for	Unity	–	Page	44	 	

Properties Of A Style Injector
	
The	following	properties	are	available	in	a	Style	Injector:	

Name:		 	 	 The	name	of	the	style.	Don’t	add	the	“@”	character	here.	
Bold:		 	 	 make	this	text	bold.	
Italic:		 	 	 write	this	text	in	italics.	
Font	Size:		 	 Use	a	custom	size	of	this	text.	0	=	default.	
Color	Action:	 	 None	(Don’t	change	color),	Set	Text	Color	(uses	the	“Text	Color”	field	to	
change	the	text	color)	or	Fade	Between	Two	Text	Colors	(blends	between	the	two	colors).	
Text	Color:		 	 The	new	color	of	the	text	(if	set	above).	
Alt	Color:	 	 The	alternate	color	to	use	if	we’ve	chosen	a	color	animation.	
Color		

How To Use A Style Injector In A Dialog
	
So	if	we	use	one	of	the	default	styles	called	“Bold”	(which	sets	our	text	to	bold),	
we	would	add	it	to	the	text	like	this:	
	

	

The	result	will	be:	

This	text	is	bold!	

	

You	may	have	noticed	that	we	didn’t	need	to	tell	LDC	when	to	close	the	bold	
effect,	that’s	one	of	the	cool	things	about	Style	injectors,	the	scripting	is	designed	
to	be	as	simple	and	unintrusive	as	possible!		
	
So	what	if	we	want	to	make	the	next	part	of	the	sentence	go	back	to	normal?	Easy,	
we	use	the	“Normal”	style	and	write	it	into	the	sentence:	
	

	

The	result	will	be:	

This	text	is	bold!	Now	this	sentence	is	normal.	

	

	

	

	 Localized	Dialog	System	for	Unity	–	Page	45	 	

We	can	add	as	many	styles	as	we	want	in	the	text,	in	the	next	example	we’ll	make	
a	new	line	italic,	to	do	this	we’ll	use	the	default	“Italic”	style:	

	

The	result	will	be:	

This	text	is	bold!	Now	this	sentence	is	normal.	

This	is	written	in	italics!	

How To Use Styles And Tokens In A Dialog
	
We	can	mix	and	match	styles	and	tokens	as	we	please!	We’ll	use	the	
$PlayerName	token	to	grab	the	player’s	name	and	insert	it	into	the	previous	
sentence:	

	

(Assuming	$PlayerName	is	“Mike”,)	the	result	will	be:	

This	text	is	bold!	Now	this	sentence	is	normal.	

Mike	is	written	in	italics!	

	

	

	

	

	

	 	

	 Localized	Dialog	System	for	Unity	–	Page	46	 	

@System Injectors
	
Not	only	are	injectors	able	to	inject	powerful	text	“styles”	and	“tokens”,	they	also	
provide	some	powerful	keywords	to	add	cadence	(delays)	to	your	words	and	to	
even	change	the	speed	of	the	typewriter	or	scrolling	system!	

Cadence Keywords
	
You	can	add	the	“@Wait”	keyword	to	add	pauses	in	the	typewriter	effect.	This	is	
a	great	way	to	enhance	the	narrative	with	natural	pauses.		
	
NOTE:	A	simulated	typewriter	second	is	based	on	the	default	typewriter	speed	setup	in	DialogUI	>	Options.	
	
@Wait10	 	 Waits	10%	of	the	typewriter’s	simulated	second.	

@Wait20	 	 Waits	20%	of	the	typewriter’s	simulated	second.	

@Wait30	 	 Waits	30%	of	the	typewriter’s	simulated	second.	

@Wait40	 	 Waits	40%	of	the	typewriter’s	simulated	second.	

@Wait40	 	 Waits	50%	of	the	typewriter’s	simulated	second.	

@Wait60	 	 Waits	60%	of	the	typewriter’s	simulated	second.	

@Wait70	 	 Waits	70%	of	the	typewriter’s	simulated	second.	

@Wait80	 	 Waits	80%	of	the	typewriter’s	simulated	second.	

@Wait90	 	 Waits	90%	of	the	typewriter’s	simulated	second.	

@Wait100	 	 Waits	1	simulated	second.	

@Wait200	 	 Waits	2	simulated	seconds.	

@Wait300	 	 Waits	3	simulated	seconds.	

@Wait400	 	 Waits	4	simulated	seconds.	

@Wait500		 	 Waits	5	simulated	seconds.	

	

Cadence	Example:	

The	following	text	will	pause	2	seconds	after	the	typewriter	reaches	the	word	
“thinking,”	before	continuing.	

	 	

	 Localized	Dialog	System	for	Unity	–	Page	47	 	

Typewriter Speed Keywords
	
You	can	use	the	“@Type”	keyword	to	change	how	fast	the	typewriter	is	typing	
each	letter.	You	can	change	this	as	many	times	as	you	want	within	the	same	text!		
	
NOTE:	The	default	typewriter	speed	can	be	found	in	DialogUI	>	Options.	These	keywords	only	affect	the	
current	screen.	
	
@Type10	 	 Types	at	10%	of	the	typewriter’s	default	speed.	

@Type20	 	 Types	at	20	of	the	typewriter’s	default	speed.	

@Type30	 	 Types	at	30%	of	the	typewriter’s	default	speed.	

@Type40	 	 Types	at	40%	of	the	typewriter’s	default	speed..	

@Type40	 	 Types	at	50%	of	the	typewriter’s	default	speed.	

@Type60	 	 Types	at	60%	of	the	typewriter’s	default	speed.	

@Type70	 	 Types	at	70	of	the	typewriter’s	default	speed.	

@Type80	 	 Types	at	80%	of	the	typewriter’s	default	speed.	

@Type90	 	 Types	at	90%	of	the	typewriter’s	default	speed.	

@Type100	 	 Types	at	100%	of	the	typewriter’s	default	speed.	

@Type150	 	 Types	at	150%	of	the	typewriter’s	default	speed.	

@Type200	 	 Types	at	200%	of	the	typewriter’s	default	speed.	

@Type300	 	 Types	at	300%	of	the	typewriter’s	default	speed.	

@Type400	 	 Types	at	400%	of	the	typewriter’s	default	speed.	

@Type500		 	 Types	at	500%	of	the	typewriter’s	default	speed.	

	

Typewriter	Speed	Example:	

The	following	types	at	10%	of	the	default	speed,	then	switches	to	normal	speed	
on	the	second	line,	and	finally	shoots	up	to	500%	speed	on	the	third	line!	

	

	 Localized	Dialog	System	for	Unity	–	Page	48	 	

Automatic Scrolling Speed Keywords
	
You	can	use	the	“@Scroll”	keyword	to	change	how	fast	the	automatic	scrolling	
function	is	moving	through	the	text.	You	can	change	this	as	many	times	as	you	
want	within	the	same	text!		
	
NOTE:	The	default	automatic	scrolling	speed	can	be	found	in	DialogUI	>	Options.	
	
@Scroll10	 	 Scrolls	at	10%	of	the	default	automatic	scrolling	speed.	

@Scroll20	 	 Scrolls	at	20	of	the	default	automatic	scrolling	speed	

@Scroll30	 	 Scrolls	at	30%	of	the	default	automatic	scrolling	speed	

@Scroll40	 	 Scrolls	at	40%	of	the	default	automatic	scrolling	speed	

@Scroll40	 	 Scrolls	at	50%	of	the	default	automatic	scrolling	speed	

@Scroll60	 	 Scrolls	at	60%	of	the	default	automatic	scrolling	speed	

@Scroll70	 	 Scrolls	at	70	of	the	default	automatic	scrolling	speed	

@Scroll80	 	 Scrolls	at	80%	of	the	default	automatic	scrolling	speed	

@Scroll90	 	 Scrolls	at	90%	of	the	default	automatic	scrolling	speed	

@Scroll100	 	 Scrolls	at	100%	of	the	default	automatic	scrolling	speed	

@Scroll150	 	 Scrolls	at	150%	of	the	default	automatic	scrolling	speed	

@Scroll200	 	 Scrolls	at	200%	of	the	default	automatic	scrolling	speed	

@Scroll300	 	 Scrolls	at	300%	of	the	default	automatic	scrolling	speed	

@Scroll400	 	 Scrolls	at	400%	of	the	default	automatic	scrolling	speed	

@Scroll500		 	 Scrolls	at	500%	of	the	default	automatic	scrolling	speed	

	

Scrolling	Speed	Example:	

The	following	text	will	begin	scrolling	at	30%	of	the	default	speed	at	start.	

	

	 Localized	Dialog	System	for	Unity	–	Page	49	 	

File Management (Save / Load)
	 	

File	Management	allows	you	to	easily	save,	load	and	delete	your	tokens	to	and	
from	Unity’s	PlayerPrefs	file.	It	supports	save	slots	(or	user	accounts)	within	the	
same	file	allowing	you	to	have	multiple	characters	or	accounts	in	your	projects!			

NOTE:	Global	Tokens	must	be	enabled	in	Options	to	use	the	File	Management	features!	

	

File Management Explained
	

If	you	want	to	use	File	Management,	you	must	first	go	to	the	Dialog	UI	>	Settings	
>	File	Management	tab	of	the	DialogUI	Component.	

The	Save	Prefix	is	an	extremely	easy	way	of	changing	between	different	save	
slots.	Whenever	you	change	this	with	a	different	string,	it	will	become	a	key	for	a	
unique	save	slot.	For	example,	you	can	call	it	“Save	Slot	1”,	“Save	Slot	2”,	etc.	if	
you	are	not	using	multiple	save	slots,	it	is	fine	to	leave	this	blank.	

“Load	On	Awake”	will	automatically	load	the	tokens	at	the	beginning	of	the	level	
using	the	current	save	prefix.	

“Save	On	Destroy”	will	save	your	tokens	whenever	the	DialogUI	component	is	
about	to	be	destroyed.	From	a	practical	point	from	view,	this	means	that	Unity	
automatically	saves	it	at	the	end	of	the	level!	

“Save	On	Application	Pause”	allows	for	automatically	saving	tokens	whenever	
the	user	pauses	the	game.	Particularly	useful	on	mobile	devices!	

	 Localized	Dialog	System	for	Unity	–	Page	50	 	

Dialog Actions
You	can	also	save,	load	and	delete	Tokens	using	the	Token	Action	tabs	in	each	
Dialog	Screen!	

	

Advanced Implementations
If	you	want	full	control	over	File	Management,	enable	it	but	uncheck	“Load	On	
Awake”,	“Save	On	Destroy”	and	“Save	On	Application	Pause”.	You	can	access	all	of	
these	functions	easily	via	script.	You	can	find	them	in	the	API	section!	

	 	

	 Localized	Dialog	System	for	Unity	–	Page	51	 	

LDC API - Common Scripts
	 	

LDC	uses	a	namespace	so	don’t	forget	to	add	this	to	the	top	of	your	scripts:	

using	HellTap.LDC;	

	 	

//	HOW	TO	GET	THE	CURRENTLY	ACTIVE	LOCALIZATION	
//	This	simple	static	string	returns	the	current	localization	
//	Returns	“English”,”French”,”German”,	etc.	
Debug.Log(DialogLocalization.language);	
	 	
//	HOW	TO	PLAY	A	DIALOG	BY	SCRIPT	–	FORCE	CLOSE	
//	This	simple	method	doesn’t	check	if	a	dialog	is	already	playing	and	will	
attempt	to	force	any	other	dialog	to	stop	first.		
DialogController	dialog;	
void	Start(){	

dialog.Play();	
}	
	
//	HOW	TO	PLAY	A	DIALOG	BY	SCRIPT	WHEN	OTHER	DIALOGS	ARE	DONE	
//	This	script	checks	to	make	sure	that	no	other	dialogs	are	still	playing	and	then	
attempts	to	play	the	dialog	variable.	This	will	make	sure	no	other	dialog	thread	is	
cut	short.	The	dialog	will	only	play	once.	
DialogController	dialog;	
bool	played	=	false;	
void	Update(){	

if	(!played	&&	DialogUI.ended){	
dialog.Play();	
played	=	true;	

}	
}	
	
//	HOW	TO	GET	A	TOKEN	
//	This	script	shows	how	to	get	a	token	as	a	string	or	as	a	float.	
string	whatIsMyName	=	DialogUI.GetToken	(“PlayerName”);	
float	whatIsMyAge	=	DialogUI.GetTokenAsFloat	(“Age”);	
	
//	HOW	TO	SET	A	TOKEN	
//	This	script	shows	how	to	set	a	token	as	either	a	String	or	as	a	float	
DialogUI.SetToken	(“PlayerName”,”Peter”);	
DialogUI.SetToken	(“Age”,	18f);	

	 Localized	Dialog	System	for	Unity	–	Page	52	 	

//	HOW	TO	SET	A	NEW	LANGUAGE	
//	Use	this	method	to	directly	change	the	language.	You	can	optionally	update	
the	GUISkin	by	setting	the	second	argument	to	true.	
DialogUI.API_ChangeLanguage	(action	:	DS_SetNewLanguage,	updateGUISkin	:	
boolean);	

//	Enum	Options:	

DS_SetNewLanguage	.No		 	 //	The	language	isn’t	changed.	
DS_SetNewLanguage	.AutoDetect		 //	Use	LDC’s	system	Detection.	
DS_SetNewLanguage	.English	 	 //	Use	Specific	Language	
DS_SetNewLanguage	.Chinese	 	 //	Use	Specific	Language	
DS_SetNewLanguage	.Korean	 	 //	Use	Specific	Language		
DS_SetNewLanguage	.Japanese	 	 //	Use	Specific	Language	
DS_SetNewLanguage	.Spanish	 	 //	Use	Specific	Language	
DS_SetNewLanguage	.Italian	 	 //	Use	Specific	Language	
DS_SetNewLanguage	.German	 	 //	Use	Specific	Language	
DS_SetNewLanguage	.French	 	 //	Use	Specific	Language	
DS_SetNewLanguage	.Portuguese		 //	Use	Specific	Language	
DS_SetNewLanguage	.Russian	 	 //	Use	Specific	Language	
	

//	EXAMPLE	USAGE:	Sets	Language	to	English	and	updates	the	GUISkin	

DialogUI.API_ChangeLanguage(DS_SetNewLanguage.English,	true);	

	

//	ALTERNATIVE	METHOD	
//	Use	this	method	to	directly	change	the	language	using	an	int	instead.	You	can	
optionally	update	the	GUISkin	by	setting	the	second	argument	to	true.	
DialogUI.API_ChangeLanguage	(action	:	int,	updateGUISkin	:	boolean);	

//	Int	Options:	

0	=	AutoDetect	
1	=	English	
2	=	Chinese	
3	=	Korean	
4	=	Japanese	
5	=	Spanish	
6	=	Italian	
7	=	German	
8	=	French	
9	=	Portuguese	
10	=	Russian	
	
	
//	EXAMPLE	USAGE:	Sets	Language	to	English	and	updates	the	GUISkin	

DialogUI.API_ChangeLanguage(1,	true);	

	

	 	

	 Localized	Dialog	System	for	Unity	–	Page	53	 	

LDC API – Core Functions
	

You	can	create	your	own	scripts	to	use	the	LDC	plugin	using	these	powerful,	yet	
simple	to	use	functions!	Here	are	the	available	methods:	
	

DialogUI.API_CreateDialog	(GameObject)	
This	function	waits	for	any	current	Dialog	to	finish,	and	then	instantiates	an	
auto-play	Dialog.		
	
DialogUI.API_CreateDialogNow(GameObject)	
This	function	immediately	instantiates	an	auto-play	Dialog.	This	forces	any	
existing	Dialog	to	finish	early).		
	
DialogUI.API_CreateDialog	(GameObject,	int)	
This	function	waits	for	any	current	Dialog	to	finish,	and	then	instantiates	an	
auto-play	Dialog.	Allows	us	to	pass	an	int	to	override	the	start	ID	of	the	dialog.	
	
DialogUI.API_CreateDialogNow(GameObject,	int)	
This	function	immediately	instantiates	an	auto-play	Dialog.	This	forces	any	
existing	Dialog	to	finish	early).		Allows	us	to	pass	an	int	to	override	the	start	ID	of	
the	dialog.	
	
DialogUI.API_PlayDialog	(DialogController)	
This	function	waits	for	any	current	Dialog	to	finish,	and	then	triggers	a	Dialog	to	
play.		
	
DialogUI.API_PlayDialogNow	(DialogController)	
This	function	immediately	triggers	a	Dialog	to	play.	This	forces	any	existing	
Dialog	to	finish	early).	
		
DialogUI.API_SetToken	(string,	string)	
The	first	String	is	the	name	of	the	Token	to	set;	the	second	string	is	the	value	to	
set	it	to.	
	
DialogUI.API_SetToken	(string,	float)	
The	String	is	the	name	of	the	Token	to	set,	the	float	is	the	value	to	set	it	to.	
	
DialogUI.API_GetTokenAsString	(string)	:	string	
Finds	a	token	that	has	a	name	matching	the	String	argument.	Returns	the	value	
as	a	string.	
	
DialogUI.API_GetTokenAsFloat	(string)	:	float	
Finds	a	token	that	has	a	name	matching	the	String	argument.	Returns	the	value	
as	a	float.	
	
DialogUI.API_GetTokenIndex	(string)	:	int	
Finds	a	token	that	matches	the	String	argument.	Returns	the	index	of	the	array	as	
an	int.	

	 Localized	Dialog	System	for	Unity	–	Page	54	 	

	
DialogUI.API_StopAllDialogs	()	
Forces	Any	playing	Dialog	to	close	early.	
	
DialogUI.API_SaveTokensToDisk()	
Saves	all	tokens	of	the	current	save	prefix	to	PlayerPrefs.	Global	Tokens	must	be	
enabled.	
	
DialogUI.API_LoadTokensFromDisk()	
Loads	all	tokens	of	the	current	save	prefix	from	PlayerPrefs.	Global	Tokens	must	
be	enabled.	
	
DialogUI.API_DeleteTokensFromDisk()	
Deletes	all	tokens	of	the	current	save	prefix	from	PlayerPrefs.	Global	Tokens	
must	be	enabled.	
	
DialogUI.API_SetTokenSavePrefix(string)	
Set	a	new	prefix	for	saving	tokens	to	PlayerPrefs.	Allows	for	different	save	slots.	
	
DialogUI.API_LoadLevel(string)	
This	function	waits	for	any	current	Dialog	to	finish,	and	then	attempts	to	load	the	
level	name	passed	to	it.		
	
DialogUI.API_TextInjector(string)	:	String	
This	function	injects	all	tokens	and	rich	text	styles	into	the	text	and	returns	it	for	
use	outside	of	the	sytem.	This	text	should	not	already	have	rich	text	tags	as	it	
may	cause	problems.	
	
DialogUI.API_	ChangeLanguage	(int)	
This	function	allows	us	to	change	the	DialogLocalization	system	language	(and	
update	the	GUI	Skins	automatically)	by	passing	an	int.	0	=	AutoDetect,	1	=	
English,	2	=	Chinese,	3	=	Korean,	4	=	Japanese,	5	=	Spanish,	6	=	Italian,	7	=	
German,	8	=	French,		9	=	Portuguese,	10	=	Russian.	

DialogUI.API_	ChangeLanguage	(int,	bool)	
This	function	allows	us	to	change	the	DialogLocalization	system	language		by	
passing	an	int	as	well	as	sending	a	boolean	to	update	the	GUI	skins.	0	=	
AutoDetect,	1	=	English,	2	=	Chinese,	3	=	Korean,	4	=	Japanese,	5	=	Spanish,	6	=	
Italian,	7	=	German,	8	=	French,		 9	=	Portuguese,	10	=	Russian.	

	

	 Localized	Dialog	System	for	Unity	–	Page	55	 	

LDC API – Building Dialogs
	

In	this	section	you’ll	learn	how	to	create	dynamic	Dialog	Threads	completely	via	
the	API.	This	is	very	powerful	and	allows	for	custom	implementations.		

Actions	and	localizations	are	not	available	for	dynamic	dialogs	in	the	traditional	
sense	as	your	scripts	dynamically	generate	these	dialogs.	Although,	you	can	add	
localization	to	these	scripts	by	using	something	like	this:	

If	(DialogLocalization.language	==	“English”){	

	 myText	=	“This	text	is	in	English”;	

}	

Using	DialogLocalization.language,	you	can	compare	languages	to	change	dialog	
strings.	Actions	can	be	implemented	in	any	way	you	want	(as	you	are	the	one	
scripting!).	These	functions	merely	put	together	the	bare	bones	of	the	dialog	
styles	and	UI	options	to	get	working	dialog	screens	and	navigation!	=)	

You	can	also	use	Function	callbacks	at	the	start	and	end	of	each	screen,	giving	
you	total	control!	

NOTE:	Check	out	the	“07	API	Dynamic	Dialogs”	Demo	that	comes	with	the	plugin	
for	an	in-depth	demo	script	(you’ll	find	this	in	“The	LDC	Demos”	folder).	

	

Step 1 – The Core Template
	

There	are	2	steps	in	creating	a	dynamic	Dialog	Thread.	The	first	thing	we	need	to	
do	is	create	the	LDC	basic	template.	This	is	achieved	by	using	the	
API_DialogCreate()	function.	

You	can	also	send	2	arguments	to	setup	the	Autoplay	flag,	and	how	long	to	delay	
before	starting	the	Dialog.	Here	is	a	real	life	example	of	how	to	setup	the	basic	
Template	with	custom	arguments:	

//	Create	a	new	DialogObject	with	Autoplay	enabled	(true),	starting	after	1	second.		

//	The	GameObject	will	be	named	“My	Dialog”	

GameObject	go	=	DialogUI.API_DialogCreate(true,	1,	“My	Dialog”);	

	

At	this	point,	we’ll	have	a	GameObject	with	a	DialogController	that’s	setup	for	
Autoplay	and	a	custom	delay.		

Now,	we	need	to	do	add	the	individual	screens.	

	

	 Localized	Dialog	System	for	Unity	–	Page	56	 	

Step 2 – Introduction
	
When	you	are	setting	up	each	Dialog	screen,	imagine	you	are	still	working	in	the	
editor.	Simply	call	the	correct	function	and	that	screen	will	be	added!	The	first	
argument	should	be	the	GameObject	you	created	in	the	first	step!	
	
The	following	functions	all	return	the	created	DialogScreen,	although	in	most	
cases	you	will	simply	call	the	functions	without	storing	it	in	a	return	variable.	
	

Step 2a – Dynamic Next Screen
	
This	is	the	function	and	arguments	to	setup	a	“Next”	screen:	
	
DialogUI.API_DialogAddNextScreen(

go	:	GameObject,	
dialogID	:	int,	
portrait	:	Texture2D,		
title	:	String,		
dialogText	:	string,		
typewriterOptions	:	DIALOG_OVERRIDE_YESNO,	
scrollingOptions	:	DIALOG_OVERRIDE_SCROLLING,	
audioFilePath	:	string,		
secondsToDisplay	:	float,		
hideNextButton	:	boolean,	
hideDialogBackground	:	boolean,	
endAfterThis	:	boolean,		
destroyAfterThis	:	boolean,	
noPortraitFadeIn	:	boolean,	
noPortraitFadeOut	:	boolean,		
screenTransitionIn	:	DIALOG_OVERRIDE_TRANSITION,	
screenTransitionOut	:	DIALOG_OVERRIDE_TRANSITION,	
nextID	:	int,	
callbacksAtStart	:	UnityEvent,	
callbacksAtEnd	:	UnityEvent,	
callbackAtStart	:	System.Action,	
callbackAtEnd	:	System.Action,	
navigationCallback	:	string[]		//	[gameObjectName,	FunctionName,	UserString]	

);	
	
Use	these	enums	for	the	typewriter,	Scrolling	and	transition	options:	

DIALOG_OVERRIDE_YESNO		 {		UseDefault,	Yes,	No	}	
	

DIALOG_OVERRIDE_	SCROLLING		 {	UseDefault,	Off,	AutomaticScrolling,		
		ManualScrollingWithVerticalBar	}	
	

DIALOG_OVERRIDE_TRANSITION	 {		UseDefault,	None,	PushLeft,	PushRight,	PushDown,	PushUp,	
InAndOutFromLeft,	InAndOutFromRight,	InAndOutFromTop,	InAndOutFromBottom,	Popup,	Eyelids,	
BarnDoors,	Zoom,	ZoomHorizontal,	ZoomVertical,	Spin,	SpinPopup,	SpinZoom}

	 Localized	Dialog	System	for	Unity	–	Page	57	 	

Step 2b – Dynamic One-Button Screen
	

This	is	the	function	and	arguments	to	setup	a	“One	Button”	screen:	

DialogUI.API_DialogAddOneButtonScreen(
	 go	:	GameObject,	
	 dialogID	:	int,	
	 portrait	:	Texture2D,		
	 title	:	String,		
	 dialogText	:	string,		

typewriterOptions	:	DIALOG_OVERRIDE_YESNO,	
scrollingOptions	:	DIALOG_OVERRIDE_SCROLLING,	

	 audioFilePath	:	string,		
	 secondsToDisplay	:	float,		
	 hideNextButton	:	boolean,	

hideDialogBackground	:	boolean,	
	 endAfterThis	:	boolean,		
	 destroyAfterThis	:	boolean,		
	 noPortraitFadeIn	:	boolean,	
	 noPortraitFadeOut	:	boolean,	

screenTransitionIn	:	DIALOG_OVERRIDE_TRANSITION,	
screenTransitionOut	:	DIALOG_OVERRIDE_TRANSITION,	

	 buttonLabel	:	String,	
nextID	:	int,	
callbacksAtStart	:	UnityEvent,	
callbacksAtEnd	:	UnityEvent,	
callbackAtStart	:	System.Action,	
callbackAtEnd	:	System.Action,	
navigationCallback	:	string[]		//	[gameObjectName,	FunctionName,	UserString]	

);	
	 	

	 Localized	Dialog	System	for	Unity	–	Page	58	 	

Step 2c – Dynamic Yes Or No Screen
	

This	is	the	function	and	arguments	to	setup	a	“Yes	Or	No”	screen:	

DialogUI.API_DialogAddYesNoScreen(
	 go	:	GameObject	
	 dialogID	:	int,	
	 portrait	:	Texture2D,		
	 title	:	String,		
	 dialogText	:	string,		

typewriterOptions	:	DIALOG_OVERRIDE_YESNO,	
scrollingOptions	:	DIALOG_OVERRIDE_SCROLLING,	

	 audioFilePath	:	string,		
hideDialogBackground	:	boolean,	

	 endAfterThis	:	boolean,		
	 destroyAfterThis	:	boolean,		
	 noPortraitFadeIn	:	boolean,	
	 noPortraitFadeOut	:	boolean,	

screenTransitionIn	:	DIALOG_OVERRIDE_TRANSITION,	
screenTransitionOut	:	DIALOG_OVERRIDE_TRANSITION,	

	 yesID	:	int,	
noID	:	int,	
callbacksAtStart	:	UnityEvent,	
callbacksAtEnd	:	UnityEvent,	
callbackAtStart	:	System.Action,	
callbackAtEnd	:	System.Action,	
navigationCallback	:	string[]		//	[gameObjectName,	FunctionName,	UserString]	

);	
	 	

	 Localized	Dialog	System	for	Unity	–	Page	59	 	

Step 2d – Dynamic Two Button Screen
	

This	is	the	function	and	arguments	to	setup	a	“Two	Button”	screen:	

DialogUI.API_DialogAddTwoButtonScreen(
	 go	:	GameObject,	
	 dialogID	:	int,	
	 portrait	:	Texture2D,		
	 title	:	String,		
	 dialogText	:	string,		

typewriterOptions	:	DIALOG_OVERRIDE_YESNO,	
scrollingOptions	:	DIALOG_OVERRIDE_SCROLLING,	

	 audioFilePath	:	string,		
hideDialogBackground	:	boolean,	

	 endAfterThis	:	boolean,		
	 destroyAfterThis	:	boolean,	
	 noPortraitFadeIn	:	boolean,	
	 noPortraitFadeOut	:	boolean,	

screenTransitionIn	:	DIALOG_OVERRIDE_TRANSITION,	
screenTransitionOut	:	DIALOG_OVERRIDE_TRANSITION,	

	 buttonLabelRight	:	String,		
	 buttonLabelLeft	:	String,		
	 yesID	:	int,	

noID	:	int,	
callbacksAtStart	:	UnityEvent,	
callbacksAtEnd	:	UnityEvent,	
callbackAtStart	:	System.Action,	
callbackAtEnd	:	System.Action,	
navigationCallback	:	string[]		//	[gameObjectName,	FunctionName,	UserString]	

);	
	 	

	 Localized	Dialog	System	for	Unity	–	Page	60	 	

Step 2e – Dynamic Multiple Button Screen
	

This	is	the	function	and	arguments	to	setup	a	“Multiple	Button”	screen:	

DialogUI.API_DialogAddMultipleButtonScreen(
	 go	:	GameObject,	
	 dialogID	:	int,	
	 portrait	:	Texture2D,		
	 title	:	String,		
	 dialogText	:	string,		
	 audioFilePath	:	string,		

hideDialogBackground	:	boolean,	
	 endAfterThis	:	boolean,		
	 destroyAfterThis	:	boolean,		
	 noPortraitFadeIn	:	boolean,	
	 noPortraitFadeOut	:	boolean,	

screenTransitionIn	:	DIALOG_OVERRIDE_TRANSITION,	
screenTransitionOut	:	DIALOG_OVERRIDE_TRANSITION,	

	 multipleButtons	:	String[],	
multipleButtonsID	:	int[],	
callbacksAtStart	:	UnityEvent,	
callbacksAtEnd	:	UnityEvent,	
callbackAtStart	:	System.Action,	
callbackAtEnd	:	System.Action,	
navigationCallback	:	string[]		//	[gameObjectName,	FunctionName,	UserString]	

);	
	 	

	 Localized	Dialog	System	for	Unity	–	Page	61	 	

Step 2f – Dynamic Data Entry Screen
	

This	is	the	function	and	arguments	to	setup	a	“Data	Entry”	screen:	

DialogUI.API_DialogAddPasswordScreen(

	 go	:	GameObject,	
	 dialogID	:	int,	
	 portrait	:	Texture2D,		
	 title	:	string,		
	 audioFilePath	:	string,		

hideDialogBackground	:	boolean,	
	 endAfterThis	:	boolean,		
	 destroyAfterThis	:	boolean,		
	 noPortraitFadeIn	:	boolean,	
	 noPortraitFadeOut	:	boolean,	

screenTransitionIn	:	DIALOG_OVERRIDE_TRANSITION,	
screenTransitionOut	:	DIALOG_OVERRIDE_TRANSITION,	

	 buttonLabel	:	String,	
	 tokenNameToSet	:	string,	
	 position	:	DS_DATA_ANCHOR,	 //	e.g.	DS_DATA_ANCHOR.Bottom	
	 dataFormat	:	DS_DATA_FORMAT,	 //	e.g.	DS_DATA_FORMAT.Text	
	 characterLimit	:	int,	

defaultValue	:	String,	
	 nextID	:	int,	

callbacksAtStart	:	UnityEvent,	
callbacksAtEnd	:	UnityEvent,	
callbackAtStart	:	System.Action,	
callbackAtEnd	:	System.Action,	
navigationCallback	:	string[]		//	[gameObjectName,	FunctionName,	UserString]	

);	

	 	

	 Localized	Dialog	System	for	Unity	–	Page	62	 	

Step 2g – Dynamic Password Screen
	

This	is	the	function	and	arguments	to	setup	a	“Password”	screen:	

DialogUI.API_DialogAddPasswordScreen(

	 go	:	GameObject,	
	 dialogID	:	int,	
	 portrait	:	Texture2D,		
	 title	:	String,		
	 audioFilePath	:	string,		

hideDialogBackground	:	boolean,	
	 endAfterThis	:	boolean,		
	 destroyAfterThis	:	boolean,		
	 noPortraitFadeIn	:	boolean,	
	 noPortraitFadeOut	:	boolean,	

screenTransitionIn	:	DIALOG_OVERRIDE_TRANSITION,	
screenTransitionOut	:	DIALOG_OVERRIDE_TRANSITION,	

	 buttonLabel	:	string,	
	 password	:	string,	
	 position	:	DS_DATA_ANCHOR,	 //	e.g.	DS_DATA_ANCHOR.Bottom	
	 passwordCaseSensitive	:	boolean,	
	 usePasswordMask	:	boolean,	
	 correctID	:	int,	

wrongID	:	int,	
callbacksAtStart	:	UnityEvent,	
callbacksAtEnd	:	UnityEvent,	
callbackAtStart	:	System.Action,	
callbackAtEnd	:	System.Action,	
navigationCallback	:	string[]		//	[gameObjectName,	FunctionName,	UserString]	

);	

	 	

	 Localized	Dialog	System	for	Unity	–	Page	63	 	

Step 2h – Dynamic Title Screen
	

This	is	the	function	and	arguments	to	setup	a	“Title”	screen:	

DialogUI.API_DialogAddTitleScreen(
	 go	:	GameObject,	
	 dialogID	:	int,		
	 title	:	String,		

subtitle	:	string,	
typewriterOptions	:	DIALOG_OVERRIDE_YESNO,	
scrollingOptions	:	DIALOG_OVERRIDE_SCROLLING,	
titleScreenPosition	:	Vector2,	
subtitleScreenPosition	:	Vector2,	
titleColor	:	Color,	
subtitleColor	:	Color,	
titleAreaSize	:	Vector2,	
subtitleAreaSize	:	Vector,	
titleFontOverride	:	Font,	 	 //	use	null	for	default	
subtitleFontOverride	:	Font,		 //	use	null	for	default	
titleFontSize	:	int,	 	 	 //	use	0	for	default	
subtitleFontSize		:	int,	 	 //	use	0	for	default	
titleTextAnchor	:	TextAnchor,	
subtitleTextAnchor	:	TextAnchor,	

	 audioFilePath	:	string,		
	 secondsToDisplay	:	float,	

hideNextButton	:	boolean,	
hideDialogBackground	:	boolean,	

	 endAfterThis	:	boolean,		
	 destroyAfterThis	:	boolean,		

screenTransitionIn	:	DIALOG_OVERRIDE_TRANSITION,	
screenTransitionOut	:	DIALOG_OVERRIDE_TRANSITION,	

	 buttonLabel	:	string,	
nextDialogID	:	int,	
callbacksAtStart	:	UnityEvent,	
callbacksAtEnd	:	UnityEvent,	
callbackAtStart	:	System.Action,	
callbackAtEnd	:	System.Action,	
navigationCallback	:	string[]		//	[gameObjectName,	FunctionName,	UserString]	

);	
	 	

	 Localized	Dialog	System	for	Unity	–	Page	64	 	

Step 2i – Dynamic Popup Screen
	

This	is	the	function	and	arguments	to	setup	a	“Popup”	screen:	

DialogUI.API_DialogAddPopupScreen(

	 go	:	GameObject,	
	 dialogID	:	int,		
	 title	:	String,		

dialogText	:	string,	
typewriterOptions	:	DIALOG_OVERRIDE_YESNO,	
scrollingOptions	:	DIALOG_OVERRIDE_SCROLLING,	
popupSize	:	Vector2,		 	 //	The	size	of	the	Popup	Window	
backgroundImage	:	Texture2D,	
backgroundAlpha	:	float,	
popupOptions	:	POPUP_OPTIONS,			//	eg	POPUP_OPTIONS.TwoButtons	

	 audioFilePath	:	string,		
	 secondsToDisplay	:	float,	

hideNextButton	:	boolean,	
hideDialogBackground	:	boolean,	

	 endAfterThis	:	boolean,		
	 destroyAfterThis	:	boolean,		

screenTransitionIn	:	DIALOG_OVERRIDE_TRANSITION,	
screenTransitionOut	:	DIALOG_OVERRIDE_TRANSITION,	

	 buttonLabel1	:	string,	
buttonLabel2	:	string,	
buttonOneNextID:	int,	
buttonTwoNextID:	int,	
callbacksAtStart	:	UnityEvent,	
callbacksAtEnd	:	UnityEvent,	
callbackAtStart	:	System.Action,	
callbackAtEnd	:	System.Action,	
navigationCallback	:	string[]		//	[gameObjectName,	FunctionName,	UserString]	

);	

Use	these	enums	for	the	Popup	Options:	

POPUP_OPTIONS{OneButton,TwoButtons}		 	

	 Localized	Dialog	System	for	Unity	–	Page	65	 	

Step 2j – Dynamic Icon Grid Screen
	

Creating	an	Icon	Grid	via	script	is	a	little	more	complicated	as	there	are	so	many	
elements	involved.		Before	calling	this	function,	you	need	to	setup	an	
“IconGridWindowOptions”	object	to	handle	the	window,	an	“IconGridLayout”	
object	to	handle	the	icon	layout	and	an	“IconGridButtons[]”	built-in	list	to	setup	
the	buttons	and	navigation.		

These	classes	are	detailed	with	examples	following	the	next	function.	

	

This	is	the	main	function	and	arguments	needed	to	setup	an	“Icon	Grid”	
screen:	

DialogUI.API_DialogAddIconGridScreen(

	 go	:	GameObject,	
	 dialogID	:	int,		
	 title	:	string,		

subtitle	:	string,	
typewriterOptions	:	DIALOG_OVERRIDE_YESNO,	
windowOptions		:	IconGridWindowOptions,	//	More	info	on	the	following	pages	…	
iconLayout	:	IconGridLayout,	 	 			//	More	info	on	the	following	pages	…	
buttons	:	IconGridButtons[],		 	 			//	More	info	on	the	following	pages	…	

	 audioFilePath	:	string,		
hideDialogBackground	:	boolean,	

	 endAfterThis	:	boolean,		
	 destroyAfterThis	:	boolean,		

screenTransitionIn	:	DIALOG_OVERRIDE_TRANSITION,	
screenTransitionOut	:	DIALOG_OVERRIDE_TRANSITION,	
callbacksAtStart	:	UnityEvent,	
callbacksAtEnd	:	UnityEvent,	
callbackAtStart	:	System.Action,	
callbackAtEnd	:	System.Action,	
navigationCallback	:	string[]		//	[gameObjectName,	FunctionName,	UserString]	

);	

	

To	create	the	IconGridWindowOptions	object	and	modify	its	values:	

IconGridWindowOptions	igwo	=	new	IconGridWindowOptions();	

igwo.IG_WindowSizeX	=	1474;	

igwo.IG_WindowSizeY	=	1024;	

	

	

	 Localized	Dialog	System	for	Unity	–	Page	66	 	

	

Here	is	an	overview	of	the	“IconGridWindowOptions	“	class	including	its	
default	values:	

class	IconGridWindowOptions{	

	 var	IG_WindowSizeX	:	int	=	1474;	
	 var	IG_WindowSizeY	:	int	=	1024;	
	 var	IG_WindowOffsetX	:	int	=	0;	
	 var	IG_WindowOffsetY	:	int	=	0;	
	 var	IG_useXScrolling	:	boolean	=	false;	
	 var	IG_useYScrolling	:	boolean	=	false;	
	 var	IG_WindowShowTitle	:	boolean	=	true;	
	 var	IG_WindowShowSubtitle	:	boolean	=	true;	
	 var	IG_AddSpaceBetweenSubtitleAndContent	:	boolean	=	false;	titles?	
	 var	IG_showPanelBG	:	boolean	=	true;	
	 var	IG_BackgroundAlpha	:	float	=	1;	
}	

	

To	create	the	IconGridLayout	object	and	modify	its	values:	

IconGridLayout	igl	=	new	IconGridLayout();	

igl.	IG_iconSizeX	=	128;	

igl.	IG_iconSizeY	=	128;	

	

Here	is	an	overview	of	the	“IconGridLayout	“	class	including	its	default	
values:	

class	IconGridLayout	{	

var	IG_iconSizeX	:	int	=	150;		
	 var	IG_iconSizeY	:	int	=	150;		
	 var	IG_iconsPerRow	:	int	=	4;		
	 var	IG_IconSpacer	:	int	=	48;		
	 var	IG_AddInnerIconSpacing	:	int	=	16;	
	 var	IG_showIconLabels	:	boolean	=	true;	
	 var	IG_iconLabelSize	:	int	=	32;	
	 var	IG_firstIconIsCloseButton	:	boolean	=	true;	
	 var	IG_closeButtonSize	:	int	=	100;	
	 var	IG_showButtonBackgrounds	:	boolean	=	true;		
	 var	IG_buttonAllignment:	TextAnchor=	TextAnchor.	MiddleCenter;	
	 var	IG_buttonImagePosition	:	ImagePosition	=	ImagePosition.ImageOnly;	
}	

	 	

	 Localized	Dialog	System	for	Unity	–	Page	67	 	

To	create	the	IconGridButtons	object	and	modify	its	values:	

IconGridButtons	igl	=	new	IconGridButtons	();	

igl.	title	=	“Button	1”;	

igl.	label	=	“Label	1”;	

igl.nextID	=	2;	

	

Here	is	an	overview	of	the	“IconGridButtons	“	class	including	its	default	
values:	

class	IconGridButtons	{	

var	title	:	string	=	"Button	Title";	
	 var	label	:	string	=	"Label";	
	 var	failedLabel	:	string	=	"Unavailable";		 //	Label	to	use	if	logic	Failed!	

var	logicFailed	:	boolean	=	false;		 //	Set	to	true	to	create	a	disabled	button!	
	 var	buttonIcon	:	Texture2D;		
	 var	nextID	:	int	=	0;	 	 	 //	Next	Dialog	ID	for	Navigation	
	 //	FINAL	NOTE:		There	are	other	values	in	this	class,	but	they	should	be	ignored!	
}	

	 	

	 Localized	Dialog	System	for	Unity	–	Page	68	 	

Google Spreadsheets
	 	

As	of	version	4.0,	the	Localized	Dialog	&	Cutscenes	framework	has	a	great	new	
tool	to	import	and	update	dialogs	using	online	Google	Spreadsheets.	LDC	is	
finally	ready	to	be	an	essential	part	of	the	development	pipeline	for	larger	
development	teams	and	companies.	

In	many	studios,	dialogs	are	split	up	between	the	writer	who	creates	the	original	
story,	the	programmer	(or	programmers)	who	build	it	in	Unity,	and	other	
writers	who	deal	with	localization	(manually	translating	the	dialogs	in	different	
languages).	In	this	development	model,	the	Google	spreadsheet	workflow	is	ideal	
for	the	following	reasons:	

- Google	Spreadsheets	and	services	are	free	to	use.	
- Google	uses	secure,	fast	and	reliable	servers	to	host	and	protect	your	data.	
- It	allows	you	to	share	your	spreadsheets	and	give	permission	to	others	on	

a	file-by-file	basis.	Perfect	for	working	in	teams	or	outsourcing	translation.	
- Your	source	is	KING.	By	design,	LDC	never	changes	anything	in	your	

spreadsheets.	

Preparing A Spreadsheet For LDC
	
Before	you	begin	working	with	spreadsheets,	you	must	make	sure	you	use	the	
LDC	Spreadsheet	template	that	has	been	created	for	you!	You	can	find	this	in	the	
project	hierarchy	here:	
	
The	LDC	Demos	&	Extras	/	Third	Party	Extras	/	Google	Docs	/	LDC	Spreadsheet	
Template.xlsx		
	
Do	not	make	changes	to	this	file.	You	must	upload	the	spreadsheet	to	your	
Google	drive	and	convert	it	into	a	Google	spreadsheet	before	it	will	be	accessible	
to	LDC.		
	

	
	
	

	 Localized	Dialog	System	for	Unity	–	Page	69	 	

Follow	these	steps	to	upload	and	convert	the	spreadsheet:	

1. Open	Your	Google	Drive	at:	https://docs.google.com	
2. Upload	the	"LDC	Spreadsheet	Template.xlsx"	file	to	your	Google	Drive	by	

dragging	the	"LDC	Spreadsheet	Template.xlsx"	file	from	your	desktop	into	
the	browser	window.	

3. The	spreadsheet	will	now	be	available	in	the	list.	Click	the	selection	box	
next	to	the	"LDC	Spreadsheet	Template.xlsx"	file	icon.	

4. Some	buttons	will	appear.	Click	"More"	and	then	select	"Open	With	>	
Google	Sheets".	

This	will	create	a	Google	Docs	version	of	the	spreadsheet,	which	will	be	
accessible	from	the	LDC	Google	Spreadsheet	Tool.		Duplicate	this	spreadsheet	to	
create	copies	that	you	can	use	directly	with	LDC.	

You	can	also	delete	the	original	(.xlsx)	version	on	your	Google	drive	if	you	wish.	

	

Understanding The Google Spreadsheet
	

Now	that	you	have	a	working	template	to	use	and	edit	in	your	Google	drive,	you	
and	your	team	can	get	to	work	building	some	great	dialogs!	

The	Golden	Rule	

Firstly,	the	golden	rule	is	that	the	spreadsheet	is	considered	by	LDC	to	be	the	
king	of	the	castle.	In	other	words,	this	means	it	presumes	that	you	know	what	
you	are	doing	and	that	before	you	import	the	spreadsheet,	the	structure	of	it	will	
remain	the	same	in	the	future.	

This	doesn’t	mean	you	can’t	make	changes	or	fix	typos.	The	Update	action	of	the	
tool	will	allow	you	to	update	the	content	of	your	spreadsheet	as	long	as	there	is	
the	same	number	of	dialog	screens.	This	is	a	safety	precaution	to	protect	your	
data,	as	it	will	not	delete	things	such	as	actions	you	setup	in	LDC.		

Plan	Ahead	

Figure	out	what	you’re	doing	before	you	start	building	the	spreadsheets.	Your	
workflow	may	look	something	like	this:	

- Writer	prepares	the	narrative	/	conversation	between	some	actors,	etc.	
- Your	programmer	converts	this	into	the	first	draft	of	the	spreadsheet	

using	their	understanding	of	LDC.	They	import	the	spreadsheet	using	the	
tool	to	make	sure	everything	works	correctly.	

- If	the	dialog	works,	the	programmer	/	tester	gives	it	the	ok	and	the	
localization	team	adds	the	relevant	fields	into	the	template.	

- The	programmer	checks	to	make	sure	the	spreadsheet	looks	good,	and	
uses	the	tool’s	“Update	Dialog	From	Spreadsheet	action”	to	update	the	
missing	localizations.	

	 Localized	Dialog	System	for	Unity	–	Page	70	 	

The	above	workflow	works	fine	as	the	structure	of	the	dialog	is	never	changed,	
and	offers	the	most	bulletproof	workflow	which	allows	you	to	playtest	early,	and	
add	missing	localizations	or	fix	typos	at	a	later	stage.	

	

Working With The Google Spreadsheet
	

	
	
The	Google	Spreadsheet	has	35	columns	consisting	of	5	technical	data	columns,	
and	30	localized	content	columns.	
	
Other	than	the	header,	each	row	represents	an	individual	LDC	Dialog	Screen.	The	
first	row	is	created	dynamically	and	is	the	Dialog	ID	that	you	would	use	normally	
to	identify	each	screen	in	the	inspector.	
	
Notes	
	
The	second	row	is	the	“Notes”	column.	Use	this	to	leave	notes	about	any	actions	
you	need	to	add	in	LDC,	or	as	a	message	to	others	in	your	team.	
	
Dialog	Type	
	
The	third	row	is	the	“Dialog	Type”.	It	offers	an	easy	to	use	drop	down	menu	so	
you	can	select	the	correct	dialog	style.	Please	note	that	Icon	Grids	are	currently	
not	supported	due	to	the	complexity	of	the	options.	
	
Navigation	
	
Navigation	is	the	fourth	row.	You	need	to	have	at	least	a	basic	knowledge	of	LDC	
to	set	this	up	correctly	otherwise	the	tool	will	try	its	best	to	guess	for	you	during	
the	import	stage	(and	will	likely	throw	some	warnings).		
	

	 Localized	Dialog	System	for	Unity	–	Page	71	 	

For	example,	if	you	are	using	a	dialog	style	that	only	has	one	navigation	exit	such	
as	a	“Next”	screen,	you	must	simply	type	a	single	number.	
“2”	(without	quotes)	would	be	valid.	
	
If	you	using	a	screen	that	requires	2	buttons	such	as	a	“Yes	Or	No”	screen	or	a	
“MultipleButton“	screen	with	2	buttons,	you	would	need	to	type	in	your	values	
like	this:	
	
“2|3”	(without	quotes)	
	
The	value	2	represents	yes	(first	button)	and	3	represents	no	(the	second	
button).	We	use	the	“|”	character	to	separate	the	values	in	the	spreadsheet.	
	
For	Multiple	Button	Screens	you	set	its	length	dynamically	by	the	amount	of	
values	you	submit.	For	example,	this	will	tell	LDC	to	use	5	buttons:	
	
“2|3|4|5|6”	(without	quotes)	
	
End	Dialog	
	
Use	the	drop	down	menu	to	select	if	this	dialog	should	end	the	thread.	True	will	
end	the	dialog	after	this	screen.	
	
<Language>	Actor	/	Title	
	
This	is	the	text	that	will	be	entered	into	the	Actor	/	Title	fields	in	your	dialogs	
(using	the	relevant	language).	
	
A	cool	feature	is	the	English	Actor	/	Title	names	are	also	linked	to	any	Portraits	
you	may	have	setup	in	your	Dialog	Library.	If	the	names	match	what	you	write	in	
this	field,	the	portrait	of	the	same	name	will	automatically	be	used	during	import.	
	
<Language>	Text	
	
This	is	the	text	that	will	be	entered	into	the	main	body	of	text	(using	the	relevant	
language).	
	
<Language>	Button/s	
	
The	buttons	field	in	the	spreadsheet	works	in	much	the	same	way	as	the	
navigation	field.	The	number	of	button	names	should	match	the	number	of	
navigation	values.	For	example,	for	a	“TwoButton”	dialog	you	could	type:	
	
“OK|Cancel”	(without	quotes)	
	
For	a	“MultipleButton”	screen	dialog	you	could	use:	
	
“Screen	Two|Screen	Three|Screen	Four|Screen	Five|Screen	Six”	(without	quotes)	
	

	 Localized	Dialog	System	for	Unity	–	Page	72	 	

The	same	applies	for	all	localizations;	they	should	all	have	the	same	number	of	
values.	

Importing A Google Spreadsheet From Your Google Drive
	
To	open	the	Google	Spreadsheet	importer,	select	the	following	menu	item:	
	
GameObject	>	LDC	>	Import	Google	Spreadsheet	
		
Upon	clicking	“Connect”,	a	web	browser	will	open	asking	you	to	log	in	and	give	
LDC	permission	to	access	your	spreadsheets.	If	you	agree,	you	will	be	given	an	
Access	Code	to	copy	and	paste	into	the	box	below:	
	

	
	
You	will	be	shown	a	list	of	your	available	Spreadsheets	in	your	Google	Drive:	
	

	
	
Click	the	Spreadsheet	you	want	to	import	from	the	list.	
	
This	will	open	the	Action	Panel,	which	allows	you	to	“Create	Dialog	From	
Spreadsheet”,	or	“Update	Dialog	From	Spreadsheet”.	As	we	are	importing	for	the	
first	time,	we	want	to	“Create	Dialog	From	Spreadsheet”.	
	

	 Localized	Dialog	System	for	Unity	–	Page	73	 	

We	are	offered	some	options	such	as	which	“Worksheet	Index”	(sheet)	to	import	
from	the	selected	spreadsheet,	and	what	we	should	call	the	new	GameObject.		
We	can	also	set	the	DialogController	to	be	an	AutoPlay	Dialog	from	the	get-go.	
	

	
	
To	import	the	spreadsheet	as	an	LDC	dialog,	we	simply	click	“Create	Dialog”	and	
let	the	tool	do	the	rest!	
	
You	are	likely	to	see	some	messages	in	the	console	about	various	issues	during	
the	import.	Mostly	these	are	fine,	but	look	out	for	LDC	Mismatch	warnings,	as	
they	should	be	fixed	on	the	Spreadsheet	side	to	avoid	any	issues	(This	is	usually	
because	a	field	has	either	too	many	values	or	not	enough.	For	example,	having	5	
multiple	button	names	and	only	4	navigation	exits).	The	messages	are	quite	
descriptive	and	should	help	you	find	the	error	quickly.	
	

Updating An Existing Dialog With A Google Spreadsheet
	
If	you’ve	already	imported	a	dialog	and	have	made	changes	to	the	spreadsheet,	
you	will	be	able	to	update	the	changes	using	a	very	easy	workflow!	
	
NOTE:	Remember	the	golden	rule?	As	long	as	you	haven’t	changed	the	structure	
of	the	dialog	you	will	be	able	to	update	the	changes	and	keep	your	other	
additions	in	tact.	If	the	structure	has	changed,	it’s	usually	a	better	idea	to	import	
the	dialog	again	to	keep	things	consistent.	
	

	 Localized	Dialog	System	for	Unity	–	Page	74	 	

For	the	most	part	the	process	is	practically	the	same	as	importing.	Simply	
authenticate	as	before	and	select	your	spreadsheet	from	the	list.	
	
This	time	we	will	select	“Update	Dialog	From	Spreadsheet”.		
	
We	can	still	choose	which	worksheet	we	want	to	import,	but	this	time	we	need	to	
drag	an	LDC	dialog	into	the	“LDC	Dialog	To	Update”	field.	
	
	

	
	
To	complete	the	update,	we	simply	press	the	“Update	Dialog”	button.	The	tool	
will	carry	out	a	series	of	checks	and	ask	you	to	verify	the	sync.	If	everything	
checks	out,	the	dialog	will	be	updated	in	real	time!	
	
Again,	watch	out	for	warnings	in	the	console.	In	some	situations	such	as	when	a	
DialogID	has	been	changed	or	no	longer	exists	these	dialog	updates	will	be	
skipped	and	leave	you	with	an	incomplete	update.		The	console	will	let	you	know	
where	the	problem	is	so	you	can	attempt	to	rectify	it.		
	
As	already	stated,	if	the	structure	has	changed	too	much	and	you	have	seen	any	
of	these	mismatch	warning	messages,	its	better	to	just	import	a	new	Dialog	from	
scratch	and	replace	the	old	one	completely.	
	

	 Localized	Dialog	System	for	Unity	–	Page	75	 	

The GUI
	 	

The	Localized	Dialogs	&	Cutscenes	framework	uses	a	great	GUI	system	that	is	
platform	and	resolution	independent!	As	of	LDC	v3.2,	the	system	has	a	native	
size	based	on	full	HD	(1920x1280)	as	well	as	a	legacy	option	based	on	the	
iPhone4	Retina	Display	(960x640).	Both	of	these	settings	scale	the	UI	as	needed	
to	fit	other	resolutions	dynamically,	bridging	the	gap	between	mobile,	web	and	
desktops	without	any	extra	work!	

Along	with	built-in	localization	features,	this	system	is	a	fantastic	base	to	build	a	
great	multi-platform,	multi-language	project.	The	best	thing	is	it’s	fully	
customizable	using	Unity’s	standard	GUISkins!	

Localized GUI Skins
	
Due	to	the	way	Fonts	work	on	mobile	(max	texture	size	of	2048	restricts	
Unicode),	the	system	is	designed	to	make	each	GUISkin	localized.	This	allows	us	
to	use	smaller	sized	fonts	per	language	to	get	better	results	on	mobile	and	to	be	
generally	more	memory	efficient	across	the	board.	Graphically,	you’ll	find	these	
all	to	be	practically	identical	with	only	font	settings	being	different	on	some	of	
them.	This	is	also	a	great	performance	and	memory	improvement	on	mobile,	as	
you	will	only	load	the	fonts	/	graphics	you	need!	
	
Note	that	you	can	use	a	single	GUISkin	with	a	Unicode	font	for	all	languages	if	
you	prefer!	Check	out	the	‘Dialog	On	GUI’	section	for	more	information	on	how	to	
setup	localized	GUISkins.	

DialogUI
	
The	DialogUI	object	allows	you	to	control	how	the	UI	is	displayed	to	the	user.	You	
can	select	sliding	transitions	on	the	portraits	and	/	or	buttons,	as	well	as	define	
which	GUISkins	to	load.	In	the	current	version	of	LDC,	many	of	the	options	
regarding	GUISkins	in	particular	have	been	moved	to	the	‘Dialog	On	GUI’	
component.		
	

	 Localized	Dialog	System	for	Unity	–	Page	76	 	

Designing New GUI Skins
	 	

You	can	completely	change	the	appearance	of	LDC’s	UI	using	GUISkins,	Unity’s	
built-in	system	for	skinning	and	positioning	User	Interfaces.	Below	is	an	
overview	of	the	properties	that	are	being	used	by	LDC:		

	

Button:	 	 	 	 	 Used	for	all	the	buttons	in	the	UI.		
NOTE:	You	cannot	use	this	to	move	buttons	(as	it	is	used	for	button	text),	use	‘Button	Offset’	instead.	

Scroll	View:	 	 	 	 	 Used	for	the	content	area	in	the	Icon	
Grid	Dialog	Styles.	

Vertical	/Horizontal	Scrollbar:	 	 Used	for	the	background	of	the	
scrollbars	in	the	Icon	Grid.	

Vertical	/Horizontal	Scrollbar	Thumb:	 Used	for	the	thumb	of	the	scrollbars	in	
the	Icon	Grid.	

CustomStyles/Dialog	Text:	 	 Used	for	the	main	text	of	the	dialog.	
NOTE:	Use	‘ContentOffset’	to	reposition	the	text.	

CustomStyles/Header	Text:	 	 The	actor’s	name	/	title	in	the	dialog.	
NOTE:	Use	‘ContentOffset’	to	reposition	the	text.	

CustomStyles/Background	Box:	 	 For	dialog	background	images.		
NOTE:	Original	size	of	the	background	box	is	960x160	(or	1920x320	for	HD	skins).	

CustomStyles/Panel	Box:	 	 	 In	the	“Multiple	Button”	screens,	this	
box	is	drawn	behind	the	buttons	and	on	top	of	the	main	Background	box.	
NOTE:	The	“Button	Offset”	style	below	also	repositions	this	automatically.	

CustomStyles/Panel	Header	Text:	 The	title	text	used	in	the	“Multiple	
Button”	style	screens.	
NOTE:	The	“Button	Offset”	style	below	also	repositions	this	automatically.	

CustomStyles/Data	Entry	Text	Field:	 The	edit	box	in	Data	Entry	screens.	

CustomStyles/Actor	Portrait:	 	 For	scaling	and	positioning	Portraits		
NOTE:	Use	‘Fixed	Height	/	Width’	to	change	the	portrait’s	size	and	‘ContentOffset’	for	repositioning.	

CustomStyles/Title	Style	Subtitles:	 Used	for	subtitles	in	“Title”	styles.	

CustomStyles/Title	Style	Titles:	 	 Used	for	the	main	text	in	“Title”	styles.	

	 Localized	Dialog	System	for	Unity	–	Page	77	 	

CustomStyles/Button	Offset:	 	 For	repositioning	buttons.	
NOTE:	Use	‘ContentOffset’	to	reposition	buttons	and	Panel	boxes.	

CustomStyles/	Windows:	 	 	 Background	window	of	the	“Popup”	
and	“Icon	Grid”	styles.	

CustomStyles/Popup	Title:	 	 Title	text	of	“Popup”	styles.	

CustomStyles/Popup	Text:	 	 Dialog	text	of	“Popup”	styles.	

CustomStyles/Icon	Grid	Title:	 	 Title	text	of	“Icon	Grid”	styles.	

CustomStyles/Icon	Grid	Subtitle:		 Subtitle	text	of	“Icon	Grid”	styles.	

CustomStyles/Icon	Grid	Button	Label:	 Button	Labels	of	“Icon	Grid”	styles.	

	

	 	

	 Localized	Dialog	System	for	Unity	–	Page	78	 	

Dialog On GUI
	
The	‘Dialog	On	GUI’	component	is	the	core	GUI	system	used	by	LDC.	It	can	be	
found	on	the	DialogUI	GameObject	(or	will	be	created	dynamically	if	another	GUI	
abstraction	layer	doesn’t	exist).	‘Dialog	On	GUI’	works	on	top	of	Unity’s	‘OnGUI’	
System	but	extends	it	with	powerful	features	that	allow	you	to	customize	how	
the	GUI	is	scaled	across	different	devices,	resolutions	and	languages.	

Rendering
	

	
	

GUI Rendering

The	GUI	Rendering	tab	allows	you	to	render	the	LDC	GUI	directly	to	the	Screen	or	
to	a	Material	(to	be	used	in	World	Space	GUI	setups	such	as	VR).		The	following	
options	are	available:	

Screen	 	

Rendering	to	the	Screen	is	the	standard	GUI	method	used	by	LDC.	It	is	the	most	
compatible	solution	(with	the	exception	of	VR)	and	offers	the	easiest	UI	
implementation.	It	should	also	run	slightly	faster	due	to	the	fact	it	is	being	
rendered	directly	to	the	screen.		

Material	 	 	

Rendering	to	a	material	allows	LDC	to	draw	the	GUI	into	its	own	RenderTexture	
and	send	it	to	a	Material	you	choose.	This	allows	you	to	setup	a	World	Space	GUI	
(see	the	“Setting	Up	A	World	Space	GUI”	chapter	for	more	information)	which	is	
primarily	useful	for	platforms	such	as	VR.		Rendering	the	GUI	to	a	material	opens	
the	possibility	for	adding	shader	effects	and	rotating,	scaling	and	positioning	the	
UI	just	like	any	other	3D	object.	

	

	

	 Localized	Dialog	System	for	Unity	–	Page	79	 	

GUI Scaling

The	GUI	Scaling	tab	allows	you	to	select	one	of	three	different	scaling	methods	to	
render	LDC’s	GUI:	

Stretch	To	Fill	 	 	

'Stretch	To	Fill'	is	the	original	scaling	system	of	LDC.	It	stretches	the	screen	to	fit	
on	any	device	and	resolution.	This	is	the	most	compatible	scaling	mode	and	will	
guarantee	everything	you	have	setup	is	visible	and	occupies	the	entire	screen	
space.	A	small	drawback	is	the	aspect	ratio	isn't	always	perfect.		

Scale	To	Fit	 	

'Scale	To	Fit'	is	a	new	scaling	mode	that	will	shrink	or	grow	the	UI	in	order	to	fit	
the	current	screen	and	preserve	the	aspect	ratio	at	the	same	time.	This	can	leave	
empty	space	around	some	of	the	edges	of	the	screen	so	the	'Anchor'	setting	can	
be	used	to	position	the	UI	in	this	space.	The	'Bottom'	anchor	is	usually	a	good	
choice	for	this.	The	'Background	Widener'	is	a	special	option	that	can	widen	the	
width	of	your	skin's	background	image	(setting	this	to	1	or	lower	will	disable	this	
functionality,	while	increasing	the	number	will	increase	the	width	of	the	image).		

Over	Scale	 	

'Over	Scale'	is	a	scaling	mode	that	grows	the	UI	to	cover	the	screen	and	maintain	
its	aspect	ratio.	It	is	similar	to	the	'Scale	To	Fit'	method	except	that	it	will	clip	
itself	in	order	to	cover	the	screen.	It	is	anchored	to	the	bottom	right	to	make	sure	
dialog	buttons	are	visible.	Because	of	this,	this	mode	is	recommended	only	for	
users	needing	simple	dialog	screens	that	prefer	a	different	approach	to	unusual	
widescreen	resolutions	(such	as	on	Android	devices).		

Skins HD / Skins SD
	

	
	
LDC	gives	you	the	option	of	using	lower	resolution	graphics	and	fonts	(which	is	
particularly	useful	for	optimizing	mobile	builds)	in	the	form	of	GUISkins.	The	
Skins	(HD)	and	Skins	(SD)	tabs	allow	you	to	organize	these	GUISkins	by	quality	
(High	Definition	vs	Standard	Definition)	as	well	as	by	language.		

	 Localized	Dialog	System	for	Unity	–	Page	80	 	

This	allows	you	to	setup	GUISkin	collections	targeted	for	particular	languages	
and	device	quality,	which	means	no	unnecessary	fonts	or	graphics	are	loaded	
into	your	game	at	runtime.	The	benefit	is	better	performance	and	less	RAM	is	
used	making	your	project	streamlined	and	optimized!	

To	add	a	path	to	your	custom	GUISkin,	you	need	to	make	sure	it	is	located	within	
a	folder	called	“Resources”.	From	within	the	Resources	folder,	you	simply	add	
the	appropriate	file	path	into	each	of	the	language	slots.	

The	default	skins	are	loaded	at	runtime.	For	example,	the	English	HD	skin	loads	
from	here	(note	that	“Resources”	should	not	be	written	in	the	filepath):	
	
Resources/UIHD/DialogSkinHD	–	English	

TIP	1:	It	is	advised	to	duplicate	the	default	GUISkins	folder	and	update	the	“Localized	Skin”	group	in	
the	DialogUI	so	you	can	keep	the	original	skins	unchanged	for	reference.	

TIP	2:	If	you	are	only	using	English	in	your	project,	you	do	not	need	to	add	the	references	to	the	
other	languages	–	don’t	forget	to	turn	off	the	other	localizations	you	are	not	using	in	the	
‘DialogLocalization’	component	found	on	the	DialogUI	GameObject	otherwise	you	may	run	into	
errors!	
	

HD Options
	

	
	
The	‘Options’	tab	in	the	‘Dialog	On	GUI’	component	allows	you	to	toggle	HD	skins	
on	a	per	platform	basis.	This	ensures	that	the	correct	GUISkin	is	loaded	on	a	
specific	platform	with	no	coding	on	your	part	whatsoever!		

You	can	also	click	“Always	Use	HD	Skins”	which	will	make	LDC	use	the	HD	
GUISkins	on	every	platform.	Otherwise,	everything	that	is	not	checked	will	use	
the	standard	definition	GUISkins	by	default.	

The	GUI	Depth	value	allows	you	to	select	which	layer	Unity	draws	the	GUI	to.	
This	allows	you	to	balance	your	own	GUI’s	with	LDC	and	make	sure	everything	is	
getting	drawn	(and	layered)	in	the	correct	order.	

The	uGUI	Camera	slot	allows	you	to	drag	in	a	camera	being	used	for	uGUI	
elements	(where	the	Canvas	is	set	to	‘Screen	Space	–	Camera’).	This	will	make	
sure	that	the	uGUI	Camera	is	rendered	above	the	LDC	GUI	layer.	

	 Localized	Dialog	System	for	Unity	–	Page	81	 	

Setting Up A World Space GUI
	
As	of	LDC	v6,	it	is	possible	to	setup	your	GUI	to	be	in	world	space	(rather	than	
screen	space),	this	is	necessary	for	VR	but	also	allows	you	to	setup	a	more	
custom	UI	for	traditional	platforms	too.	
	

How To Setup A Basic World-Space GUI

Follow	these	steps	to	setup	a	World	Space	GUI:	

1. Make	sure	you	have	a	Dialog	UI	GameObject	setup	in	the	scene.	
	

2. In	the	DialogOnGUI	Rendering	tab,	set	the	“Render	To:”	dropdown	to	the	
“Material”	setting.	It	is	recommended	to	use	the	default	“LDC	GUI	World	
Space”	material.	
	

3. Under	the	“GUI	Scaling”	section	in	the	DialogOnGUI	component,	use	
“Stretch	To	Fill”	as	that	will	preserve	more	pixels	in	world	space.	
	

4. From	here,	you	can	use	the	menu	shortcuts	to	create	the	world	space	GUI	
object	using	one	of	the	following	menu	options:	

GameObject	>	LDC	>	World	Space	>	Create	World	Space	GUI	(Quad)	
GameObject	>	LDC	>	World	Space	>	Create	World	Space	GUI	(Curved	Mesh)	

	
NOTE:	In	regard	to	the	World	Space	GUI	objects,	it’s	worth	mentioning	that	a	Quad	
is	a	simple	flat	mesh	that	displays	the	UI	in	3D	space.	The	Curved	Mesh	uses	a	
curved	plane	which	adds	more	depth.	You	may	also	experiment	by	using	custom	
meshes	if	you	prefer.	As	long	as	the	UVs	are	correct,	it	is	likely	to	work!	

You	should	now	have	a	working	GUI	setup	that	uses	the	mouse	as	input.	You	can	
move,	rotate	and	scale	the	GUI	as	well	as	make	your	own	shaders	for	the	UI	
Material.	

For	more	information	on	setting	up	the	Dialog	World	Space	GUI	(including	
additional	information	about	setting	up	the	system	specifically	for	VR),		continue	
on	to	the	“Dialog	World	Space	GUI”	chapter.	

	

	 Localized	Dialog	System	for	Unity	–	Page	82	 	

Dialog World Space GUI
	
The	‘Dialog	World	Space	GUI’	component	is	used	to	display	and	handle	the	input	
of	the	LDC	GUI	in	world	space,	overriding	some	of	the	options	of	the	Dialog	UI	
component.	It	is	divided	into	the	“Input”,	“Raycasting”	and	“Options”	tabs.	
	
The	Input	tab	allows	you	to	setup	how	you	will	interact	with	the	World	Space	
GUI.	The	following	Input	modes	can	be	selected:	
	

Disabled Input
	

	
	
The	disabled	input	mode	blocks	all	interactions	to	the	LDC	GUI	so	it	can	only	be	
viewed	and	not	interacted	with.	
	

Mouse Input
	

	
	
The	Mouse	input	mode	allows	you	to	interact	with	the	World	Space	GUI	using	the	
mouse	(and	the	usual	LDC	keyboard	shortcuts).	The	following	options	are	
available:	
	
Scroll	Wheel	Sensitivity	 	 	

Boosts	the	sensitivity	of	the	mouse’s	scroll	wheel	(used	primarily	for	scrolling	
through	Icon	Grids,	etc.).	
	
	

	 Localized	Dialog	System	for	Unity	–	Page	83	 	

Transform Input
	

	
	
The	Transform	input	mode	allows	you	to	interact	with	the	World	Space	GUI	
using	a	Transform	from	the	current	scene	to	simulate	a	mouse	pointer.		This	is	
works	specifically	well	for	VR	as	the	Transform	should	usually	be	one	of	the	
player’s	hands.	
	
Pointer	Transform	 	 	

This	is	the	Transform	that	will	be	used	as	the	simulated	mouse	pointer.	In	VR,	
this	should	be	the	player’s	hand	(or	a	child	object	of	the	player’s	hand).		
	
What	Should	Trigger	LDC	Buttons?	 	

Which	KeyCode	should	be	used	to	detect	when	a	player	wants	to	interact	with	
the	LDC	GUI?	By	default,	“Joystick	Button	0”	is	chosen	(which	should	bind	to	the	
Oculus	“One”	Button).	
	
Scrolling	Mode	

There	are	several	scrolling	modes	for	this	input	mode	which	allows	the	player	to	
scroll	through	Icon	Grids.	The	Options	are:	
	
No	Scrolling:		 	 Scrolling	is	disabled.	
	
Scroll	With	Input	Axes:	 You	can	setup	the	names	of	a	horizontal	and	vertical	
input	axis	(configured	in	Unity’s	Input	manager)	to	control	which	buttons	
control	scrolling.	These	axes	can	be	reversed	by	using	the	“Invert	Input”	
checkboxes.	Finally,	the	“Scrolling	Sensitivity”	value	allows	you	to	control	how	
the	fast	/	slow	the	scrolling	is.	
	
Scroll	With	Input	Axes:	 You	can	setup	the	individual	keycodes	that	control	
scrolling	for	each	direction.	Finally,	the	“Scrolling	Sensitivity”	value	allows	you	to	
control	how	the	fast	/	slow	the	scrolling	is.	
	

	 Localized	Dialog	System	for	Unity	–	Page	84	 	

Raycasting

	

The	Raycasting	tab	handles	the	detection	of	input	by	using	raycasts	to	simulate	
world	space	back	to	screen	space.	The	following	options	are	available:	

Raycast	Distance	

How	far	will	we	allow	the	raycast	distance	to	go?	

Ignore	Collisions	

Raycasting	will	ignore	all	other	objects	(which	ignores	LayerMasks	and	Tags).	
Disable	this	if	you	want	your	raycasts	to	take	other	objects	/	colliders	into	
account.	This	is	enabled	by	default	

Raycast	LayerMask	

The	raycast	will	only	collide	with	layers	contained	in	the	mask	(you	should	make	
sure	that	the	layer	of	your	GUI	object	is	one	of	them!).	

Raycast	Tag	

The	raycast	will	only	collide	with	objects	that	use	the	supplied	Tag	(you	should	
make	sure	that	the	tag	of	your	GUI	object	matches!).	If	this	is	blank,	tags	will	be	
ignored.	

	

	

	 Localized	Dialog	System	for	Unity	–	Page	85	 	

Options

	

The	options	tab	allows	you	to	customize	some	miscellaneous	items.	The	
following	options	are	available:	
	

Cache	Camera	

You	can	manually	add	the	main	camera	in	your	scene	to	the	Camera	slot	in	order	
to	optimize	the	code.	If	you	have	a	main	camera	that	changes,	leave	this	blank	for	
dynamic	lookups.	
	

Use	Large	Screen	Keyboard	For	Data	Entry	/	Password	Screens	

When	entering	data	using	the	Data	Entry	or	Password	Dialog	Styles,	a	basic	full	
screen	keyboard	will	also	be	displayed	to	facilitate	data	entry.	This	is	highly	
recommended	when	using	the	Transform	Input	mode	(VR)	as	a	keyboard	is	not	
available	on	those	platforms.	
	

Debug	Mode	

Enable	this	checkbox	to	see	debug	lines	in	the	scene	view	and	messages	in	the	
console	in	regard	to	ray-casting.	This	will	help	you	debug	issues	while	setting	up	
your	raycast	layers,	tags,	etc.	

	 	

	 Localized	Dialog	System	for	Unity	–	Page	86	 	

Dialog World Space Line Renderer

	

If	you	are	using	the	Transform	Input	mode,	an	optional	script	called	the	“Dialog	
World	Space	Line	Renderer”	is	available	to	help	you	make	VR	beams	to	show	the	
user	where	they	are	pointing.	

NOTE:	An	example	of	this	fully	setup	can	be	found	in	the	“LDC	World	Space	VR	
Demo”	scene	found	in	the	World	Space	demos.	

This	component	requires	a	LineRenderer	component	to	render	the	pointer	beam.	
You	can	optionally	add	another	object’s	Renderer	to	the	“Hit	Point	Renderer”	
field	which	will	position	it	where	it	intersects	with	a	collider.	Using	this	script,	
you	can	create	results	like	this:	

	 	

In	the	example	above,	the	straight	red	beam	is	rendered	by	the	Line	Renderer	
and	the	small	red	sphere	at	the	end	of	the	beam	is	the	“Hit	Point	Renderer”,	
showing	where	the	interaction	has	collided.	

The	component	automatically	hides	the	renderers	if	you	are	not	using	the	
Transform	Input	mode	or	there	is	no	LDC	dialog	playing.	

	 	

	 Localized	Dialog	System	for	Unity	–	Page	87	 	

World Space GUI Considerations

There	are	several	things	to	consider	when	using	LDC’s	World	Space	GUI:	
	

Mouse	Input	

Mouse	Input	is	simulated	in	world	space	and	converted	back	to	the	standard	UI	
system.	Almost	everything	will	work	normally	except	for	secondary	interactions.	
For	example,	clicking	core	buttons	will	work	normally	but	things	like	dragging	
scroll	bars	will	not	work.	However,	the	mouse’s	scroll	wheel	will	work	for	
vertical	movement	of	Icon	Grids.	The	Mouse	Input	mode	is	also	compatible	with	
LDC’s	usual	keyboard	shortcuts	too.	

	
Transform	Input	

When	using	Transform	Input	(for	VR),	LDC’s	keyboard	shortcuts	are	disabled	to	
avoid	conflicts.	As	with	the	Mouse	Input,	secondary	interactions	are	also	not	
possible,	limiting	a	user’s	interactions	to	core	buttons	and	scrolling	through	icon	
grids.	Ideally,	Icon	Grids	should	be	designed	not	to	have	any	scrolling	at	all	in	
order	for	VR	interactions	to	be	as	painless	for	the	user	as	possible	(literally	point	
and	hit	a	single	button).	If	scrolling	is	absolutely	required,	it	can	be	setup	with	
custom	keycodes	/	axes.	
	

Performance	

There	are	performance	and	memory	implications	when	using	a	World	Space	GUI.	
For	this	reason,	World	Space	setups	are	recommended	mainly	for	desktop	and	
VR	platforms.	
	

Aspect	Ratio	

You	may	notice	that	the	World	Space	GUI’s	are	often	scaled	to	1.92	x	1.28	x	1.	
This	to	match	up	with	the	core	LDC	resolution	which	is	based	on	1920	x	1280.	
Even	though	this	is	a	recommended	setup,	it	is	not	a	requirement.	
	

Conclusions	

You	should	keep	these	limitations	in	mind	while	designing	your	Dialog	Screens.	
Try	to	avoid	creating	content	that	requires	scrolling	to	make	it	as	easy	as	
possible	for	the	user	to	interact	with	it	across	platforms.		

There	are	options	for	using	custom	keyCodes	/	axes	for	scrolling	in	VR	if	
necessary	but	if	you	are	using	the	mouse,	do	not	create	icon	grids	that	require	
horizontal	scrolling	(stick	to	vertical	scrolling	only).	

	

	 Localized	Dialog	System	for	Unity	–	Page	88	 	

Support
	

If	you	need	any	assistance	or	have	suggestions	for	this	plugin,	feel	free	to	visit	
the	LDC	website	at:	

	

www.unitygamesdevelopment.co.uk	

	

I	hope	you	find	this	system	useful,	as	I	have	in	my	own	personal	projects!	=)	

All	the	best!	

-	Mel	

	

	

Final	Notes	

All	fonts	and	many	images	found	in	the	Demos	folder	of	this	package	do	not	belong	to	me	and	were	found	
online	at	various	freeware	websites.	If	you	are	launching	a	commercial	project,	you	should	verify	you	are	
using	fonts	and	assets	that	are	fully	licensed.	This	package	does	not	cover	the	licenses	for	these	fonts	or	
images	as	they	are	for	demonstration	use	only.		

	

