
	

PoolKit	-	For	Unity.	
www.unitygamesdevelopment.co.uk	

Created	By	Melli	Georgiou	

©	2018	–	2021	Hell	Tap	Entertainment	LTD	

	

	

	
	

	
The	ultimate	system	for	professional	and	modern	object	pooling,	

spawning	and	despawning.	
	

	

	 PoolKit	for	Unity	–	Page	2	 	

	

	

	

	

Table of Contents

Version	History	...	4	
An	Introduction	To	PoolKit	..	5	
What	Is	PoolKit?	..	5	
Why	Choose	PoolKit	Over	Other	Solutions?	..	5	
What	Can	PoolKit	Do	For	Your	Project?	..	6	

Quick	Setup	..	8	
How	To	Create	A	Local	Pool	...	8	
How	To	Create	A	Global	Pool	..	8	
How	To	Create	A	Global	Pool	Group		(Advanced)	..	8	
How	To	Setup	Your	Global	Pools	...	8	
How	To	Create	A	Spawner	...	8	

An	Overview	Of	PoolKit	...	9	
About	The	PoolKit	Setup	Script	...	9	
About	The	Pool	Script	..	9	
About	The	Spawner	Script	...	9	
About	The	Despawner	Script	...	10	
About	The	PoolKit	Global	Pools	Asset	..	10	
	About	The	PoolKit	Preferences	..	10	

Setting	Up	The	PoolKit	Setup	Component	..	11	
Setting	Up	The	Pool	Component	..	13	
The	Pool	Tab	..	13	
The	Prefabs	Tab	(Overview)	..	15	
The	Prefabs	Tab	(Prefab)	..	15	
The	Prefabs	Tab	(Instances)	..	16	
The	Prefabs	Tab	(Features)	...	18	
The	Prefabs	Tab	(Advanced)	...	20	
The	Statistics	Tab	...	22	

Setting	Up	The	Spawner	Component	..	24	
The	Spawner	Tab	...	24	
The	Prefabs	Tab	...	27	
The	Instances	Tab	..	28	
The	Spawn	Points	Tab	..	30	
The	Events	Tab	...	33	
	
	

	 PoolKit	for	Unity	–	Page	3	 	

Setting	Up	The	Despawner	Component	...	34	
The	Despawner	Tab	–	After	Countdown	..	34	
The	Despawner	Tab	–	After	Countdown	With	Random	Range	34	
The	Despawner	Tab	–	After	Particle	System	Finishes	...	34	
The	Despawner	Tab	–	After	Audio	Source	Finishes	...	35	
The	Despawner	Tab	–	After	Physics	Overlap	Event	...	35	
The	Despawner	Tab	–	After	Collision	Event	...	37	
The	Despawner	Tab	–	After	Trigger	Event	..	38	
The	Despawner	Tab	–	After	Collision	2D	Event	...	38	
The	Despawner	Tab	–	After	Trigger	2D	Event	...	39	
The	Despawner	Tab	–	After	Raycast	Event	...	39	
The	Despawner	Tab	–	After	Raycast	2D	Event	...	40	
The	Despawner	Tab	–	After	Called	By	Script	..	40	
The	Chain-Spawning	Tab	..	41	
The	Events	Tab	...	45	

Setting	Up	The	PoolKit	Global	Pools	Asset	...	46	
Setting	Up	The	PoolKit	Preferences	...	47	

PoolKit	Workflow	And	Setup	Tips	..	49	
Pool	Types	..	49	
Local	Pools	...	49	
Global	Pools	...	50	
Notes	On	Setting	Up	Global	Pools	...	50	
[Advanced]	Using	‘Global	Pool	Groups’	..	50	
Pool	Planning	..	51	
Example	Of	The	Fastest	Pool	..	51	

PoolKit	API	..	52	
PoolKit	API	...	52	
Pool	API	...	55	
Spawner	API	..	62	
Despawner	API	...	63	
PoolKit	Setup	API	...	65	

Support	...	66	
	

	 	

	 PoolKit	for	Unity	–	Page	4	 	

Version History
	

	
v3.0.2	
-	Bugfix:	Fixed	issue	when	despawning	objects	with	2D	physics	and	the	countdown	option.	
	
v3.0.1	
-	Bugfix:	Fixed	instance	recycling	bug.	
	
v3.0	
-	Despawner:	Conditional	Chain	spawning	for	physics	events.	
-	Despawner:	Foldout	for	each	individual	chain	spawning	entries.	

	
v2.0.2	
-	Updated	for	Unity	2019.3	

	
v2.0.1	
-	Despawner:	Hotfix	for	Audiosources.	
-	Minimum	Unity	version	is	now	2017.4	

	
v2.0	
-	Spawner:	Randomized	Offsets	feature	to	apply	random	offsets	to	spawn	points.	
-	Spawner:	Allow	a	random	range	of	instances	per	spawn	cycle.	
-	Spawner:	Allow	spawners	to	play	until	a	specific	number	of	instances	are	spawned.	
-	Spawner:	Update	prefabs,	positions,	offsets,	rotations	and	scale	by	instance	or	spawn	cycle.	

-	Despawner:	New	"After	Raycast	Event"	and	"After	Raycast2D	Event"	modes.	
-	Despawner:	Chain	spawning	now	supports	a	random	range	of	instances.	

	
v1.0.4	
-	Updated	how	parenting	works	to	avoid	warnings	with	RectTransforms.	

	
v1.0.3	
-	Added	new	SetSpawnPointPosition	API	method	to	spawners.	

	
v1.0.2	
-	Bugfix	for	caching	IPoolKitListeners	on	newer	versions	of	Unity.	

	
v1.0.1	
-	Prefabs	can	now	be	minimized	and	expanded	in	the	Pool	Editor.	

	
v1.0	
-	First	Commercial	version	of	plugin.	

	 	

	 PoolKit	for	Unity	–	Page	5	 	

An Introduction To PoolKit
	

	

What Is PoolKit?
	
PoolKit	is	the	ultimate	Unity	plugin	for	professional	and	modern	object	pooling,	
spawning	and	despawning.	It	is	the	type	of	toolkit	that	any	game	project	would	
benefit	from!	

PoolKit	allows	you	to	build	any	number	of	local	and	global	GameObject	pools,	
spawners	and	despawners.	A	Pool	is	essentially	a	manager	that	handles	an	array	
of	“instances”	(or	clones)	of	a	group	of	prefabs.	These	instances	are	“recycled”	
instead	of	constantly	instantiating	and	destroying	objects,	which	can	significantly	
improve	performance.	

Why Choose PoolKit Over Other Solutions?

At	the	time	of	release,	PoolKit	has	powerful	and	unique	features	that	set	it	apart	
from	traditional	pooling	systems	such	as:	

• Easy	to	use	visual	editors	for	every	part	of	the	system!	
• Multiple	data	structures,	known	in	PoolKit	terminology	as	“Pool	Types”.	

PoolKit	can	automatically	use	different	data	structures	under	the	hood	
depending	on	if	you	are	using	a	fixed	or	dynamic	sized	pool.	This	can	
result	in	significant	performance	increases	unavailable	in	other	pooling	
systems	and	all	without	any	difference	in	the	way	you	use	the	API!	

• Pools	can	be	local	or	global	and	created	at	any	time.	Global	pools	can	also	
be	automatically	created	when	the	game	starts	without	any	scripting!	

• “Chain	spawning”	is	a	feature	of	the	easy	to	use	Despawner	components.	
This	allows	instances	to	chain-spawn	a	list	of	new	objects	when	they	
despawn,	all	with	their	own	customizable	settings!	

• “Pool	Protection”	is	an	optional	feature	that	protects	the	pool	from	you	
accidentally	deleting	an	instance	(it	happens!).	It	allows	instances	to	be	
recreated	in	real-time	and	avoid	potential	runtime	errors!	

	 PoolKit	for	Unity	–	Page	6	 	

• The	PoolKit	Spawner	offers	a	truely	incredible	amount	of	functionality,	
making	it	great	for	setting	up	weapons,	special	effects	and	so	much	more!	

• An	all-purpose	instance	Despawner	component	as	well	as	“Automatic	
Despawning”	features	available	at	the	Pool’s	Prefab	level.	

• The	“IPoolKitListener”	interface	is	available	for	scripts	to	run	actions	
when	they	are	spawned	and	despawned	using	ultra-fast	and	unique	
caching!	

PoolKit	is	designed	to	be	scalable	for	all	users.	There	are	custom	visual	editors	
for	every	part	of	the	system	(as	well	as	many	built-in	PlayMaker	actions)	that	
make	it	easier	for	beginners.	At	the	same	time,	the	sheer	customizable	nature	of	
the	system,	the	ability	to	make	local	and	global	pools	anywhere,	as	well	as	the	
powerful	API	makes	it	a	great	choice	for	advanced	users	too.		

The	API	allows	advanced	users	to	get	their	hands	dirty	by	allowing	for	pool	
creation	and	modification,	overriding	instance	creation	and	subscribing	to	a	
magnitude	of	Events	to	name	but	a	few	scenarios.	PoolKit	has	you	covered!	

What Can PoolKit Do For Your Project?

• BOOST	PERFORMANCE	
When	you	instantiate	and	destroy	objects	in	your	game,	you	create	
“garbage”	in	memory	that	needs	to	be	cleaned	up.	This	leads	to	frame	rate	
hiccups	that	diminish	the	experience	of	your	games.	If	you	think	of	a	
typical	game	situation	of	a	weapon	instantiating	a	wave	of	bullets,	this	
will	invariably	performance	“hiccups”.	PoolKit	uses	an	industry	proven	
way	of	handling	this	problem	using	a	unique	take	on	“Pooling”.	PoolKit	is	
so	optimized	that	it	is	possible	to	get	zero	memory	allocations	during	
runtime	(except	for	the	first	frame	where	the	pool	is	created	of	course!).	
	

• FEATURES	
PoolKit	offers	powerful	functionality	for	setting	up	your	pools	and	
configuring	how	objects	will	be	spawned	and	despawned	(in	2D	and	3D!).	
Pools	can	be	local	to	a	scene,	persistant	throughout	the	game	or	use	a	
custom	global	configuration	that	allows	you	to	load	and	unload	pools	at	
will.		Unlike	other	systems,	PoolKit’s	scalability	means	you	won’t	waste	

	 PoolKit	for	Unity	–	Page	7	 	

vast	amounts	of	performance	on	features	you	don’t	need.	Most	features	
can	be	toggled	allowing	you	to	boost	performance	even	more	by	turning	
off	some	of	the	bells	and	whistles.	Spawning	is	easy	with	the	PoolKit	
Spawner	and	at	the	time	of	release,	we	think	it	is	unrivalled	on	the	Asset	
Store	with	vastly	superior	functionality.	There	are	also	a	variety	of	ways	
to	despawn	objects	using	either	the	“Automatic	Despawn”	feature	on	the	
Pool	itself	or	using	the	all-purpose	Despawner	component	on	a	specific	
prefab.	Lastly,	PoolKit	also	includes	real-time	Pool	statistics,	giving	you	
visual	insights	to	pool	usage	in	the	Editor.	PoolKit	is	a	truly	modern	
powerhouse	of	object	pooling!	
	

• EASE	OF	USE	
As	part	of	PoolKit’s	scalable	design	philosophy,	powerful	visual	editors	
give	tremendous	power	to	advanced	users	but	also	help	new	developers	
at	the	same	time.	As	well	as	the	built-in	PlayMaker	actions,	PoolKit	has	an	
optional	“Helpful	Notes”	system	that	can	be	toggled	in	it’s	own	Unity	
Preferences.	These	notes	will	explain	exactly	what	is	happening	as	you	
make	different	selections	to	pools,	spawners	and	despawners.	It	even	
offers	tips	and	dynamic	code	snippets	if	you’re	using	the	API!	You	are	told	
if	a	certain	configuration	could	cause	issues	or	if	a	certain	feature	could	
affect	performance	if	used	excessively.	Pooling	is	extremely	complicated	
under	the	hood	and	PoolKit	goes	the	extra	mile	not	only	to	make	it	easier	
to	understand	but	to	directly	help	you	do	what	you	need	to	do!	
	

• CROSS	PLATFORM	&	OPTIMIZED	
You	may	have	noticed	that	PoolKit’s	demos	are	available	using	WebGL	
builds.	We’ve	also	tested	and	optimized	for	desktops	and	mobile!	
	

• GREAT	SUPPORT	
As	well	as	the	thorough	documentation,	online	forum	and	video	tutorials,	
friendly	email	support	is	always	at	hand	if	you	need	help!	J	

	

	

	 PoolKit	for	Unity	–	Page	8	 	

Quick Setup
	

After	installing	the	PoolKit	package,	here’s	how	to	quickly	create	PoolKit	
elements	from	the	menu	(you	can	also	do	this	by	right-clicking	in	the	Hierarchy).	

How To Create A Local Pool

To	create	a	new	local	pool	from	the	menu:	
GameObject	>	PoolKit	>	Create	Local	Pool	

A	Local	Pool	will	be	created	and	selected	in	the	Hierarchy	pane.	

	

How To Create A Global Pool

To	create	a	new	global	pool	from	the	menu:		
GameObject	>	PoolKit	>	Create	Global	Pool	

A	Global	Pool	will	be	created	and	selected	in	the	Hierarchy	pane.	You	should	save	this	GameObject	as	a	prefab	so	you	can	
easily	use	it	with	the	“Setup	Global	Pools”	option.	

	

How To Create A Global Pool Group (Advanced)

To	create	a	new	global	pool	group	from	the	menu:		
GameObject	>	PoolKit	>	Create	Global	Pool	Group	

A	Global	Pool	within	its	own	PoolKitSetup	group	will	be	created	and	selected	in	the	Hierarchy	pane.	This	allows	you	to	create	
custom	global	pools	that	you	can	manage	manually.	

How To Setup Your Global Pools

To	setup	your	Global	Pools	from	the	menu:		
GameObject	>	PoolKit	>	Setup	Global	Pools	

You	will	be	taken	to	the	PoolKit	Global	Pools	asset	to	setup	which	global	pools	will	be	created	automatically	when	the	game	
starts.	

How To Create A Spawner

To	create	a	new	Pool	from	the	menu:		
GameObject	>	PoolKit	>	Create	Spawner	

A	Spawner	will	be	created	and	selected	in	the	Hierarchy	pane.		

	 	

	 PoolKit	for	Unity	–	Page	9	 	

An Overview Of PoolKit
	

About The PoolKit Setup Script
	

The	“PoolKitSetup”	script	is	an	easy	way	to	
setup	global	PoolKit	options	without	using	the	
API.	

You	can	setup	how	instances	are	named,	
whether	debug	messages	should	be	shown	and	
you	can	also	choose	to	use	it	as	the	parent	
object	of	a	‘Global	Pool	Group’.	
	

About The Pool Script
	

The	“Pool”	component	allows	you	to	
setup	a	new	PoolKit	Pool.	

You	can	setup	how	the	pool	will	work	
by	setting	features	like	the	Pool	Type	
and	Pool	Protection.	

The	second	tab	allows	you	to	setup	the	
prefabs	that	will	be	used	in	the	Pool,	
along	with	their	prefab-specific	settings	
and	features.	

Finally,	you	can	debug	the	pool	at	
runtime	by	using	the	Statistics	tab.		

	

About The Spawner Script

The	Spawner	component	allows	you	to	spawn	
any	number	of	prefabs	using	a	feature	packed,	
easy	to	use	system	that	is	somewhat	similar	in	
concept	to	Unity’s	Particle	System.	

Firstly,	you	setup	core	settings	such	as	the	start	
event,	frequency,	amount,	duration,	etc.	You	then	
configure	which	prefabs	to	use	and	how	they	will	
be	selected.	When	instances	are	spawned,	you	
can	setup	how	they	are	positioned,	scaled,	
rotated	and	parented.	Finally,	events	are	
available	to	connect	the	Spawner	to	other	scripts.	 	

	 PoolKit	for	Unity	–	Page	10	 	

About The Despawner Script
	

The	“Despawner”	script	is	a	tool	to	
easily	despawn	objects	based	on	a	
variety	of	situations	such	as	after	a	
countdown,	particle	system,	audio,	or	
physics	event.	

Chain	spawning	can	also	be	setup	to	
spawn	a	list	of	new	objects	when	an	
instance	is	despawned.		

Finally,	Events	are	available	to	
connect	to	other	scripts.	

	
	

About The PoolKit Global Pools Asset

The	“PoolKit	Global	Pools”	Asset	
allows	you	to	setup	which	global	
pools	will	be	created	
automatically	when	the	game	
starts.	

You	simply	drag	and	drop	your	
global	pool	prefabs	into	the	list	
and	you’re	good	to	go!	

	

	

	

 About The PoolKit Preferences
	

PoolKit	has	its	own	section	in	the	Unity	
Preferences	window.	

You	can	setup	how	much	info	is	displayed	to	
you	in	the	Unity	Visual	Editors,	how	the	
PoolKit	Spawners	are	displayed	in	the	scene	as	
well	as	a	button	to	revert	to	default	settings.	

	

	 PoolKit	for	Unity	–	Page	11	 	

Setting Up The PoolKit Setup Component
	

	

The	“PoolKit	Setup”	script	is	an	easy	way	to	setup	some	global	PoolKit	options	
without	using	the	API.	It	also	allows	for	a	great	way	to	setup	a	group	of	global	
Pools	(aka	“Global	Pool	Groups”).	
	

Update	PoolKit	Settings	

This	option	will	determine	if	the	actions	in	this	section	will	update	or	not.	The	
Global	Pool	Group	section	is	treated	separately.		
	

Rename	Objects	In	Pools	

The	first	drop	down	menu	allows	you	to	setup	how	to	rename	the	instances	that	
are	created	in	Pools.	Note	that	renaming	can	be	performance	hungry	when	using	
rapidly	growing	Dynamic	Lists.	The	following	options	are	available:	

Easy	To	Read	Object	Name	With	PoolKit	And	Index	
This	renames	instances	to	use	a	template	like	this:	
My_Prefab_PoolKit_0001	

Easy	To	Read	Object	Name	And	Index	
This	renames	instances	to	use	a	template	like	this:	
My_Prefab_0001	

Object	Name	With	PoolKit	And	Index	
This	renames	instances	to	use	a	template	like	this:	
My	Prefab(Clone)_PoolKit_0001	

Object	Name	With	Index	
This	renames	instances	to	use	a	template	like	this:	
My	Prefab(Clone)_0001	

No	Renaming	
This	uses	the	Unity	default	name,	like	this:	
My	Prefab(Clone)	
	

	 PoolKit	for	Unity	–	Page	12	 	

Only	Rename	In	Editor	

This	is	a	great	option	that	allows	for	more	readable	names	in	the	Editor	but	turns	
it	off	in	builds	which	keeps	performance	at	its	best.	If	you	need	to	match	the	
names	that	you	see	in	the	Editor,	you	can	disable	this	option.	

Show	Debug	Messages	

This	option	will	show	PoolKit	debug	messages	in	the	console.	Please	note	that	
writing	to	the	console	actually	causes	memory	allocations	so	this	should	be	
disabled	in	final	builds.	

Global	Pool	Group	/	Don’t	Destroy	On	Load	

This	option	will	stop	this	GameObject	and	any	of	its	children	from	being	
destroyed	when	changing	scenes.	This	makes	it	a	great	way	to	setup	a	global	
group	of	Pools,	known	in	PoolKit	terminology	as	a	‘Global	Pool	Group’.		

When	creating	a	Global	Pool	from	the	menu,	it	will	
automatically	be	setup	as	a	child	of	the	“PoolKit	
Setup”	object.		

The	most	common	setup	for	Global	Pools	is	to	mark	all	of	the	child	pools	as	
global	(by	checking	the	‘Don’t	Destroy	On	Load’	checkbox	in	the	Pool	tab).	From	
there,	you	can	save	it	as	a	prefab	and	place	it	on	the	first	scene	of	your	game	
(which	should	be	setup	as	a	type	of	splash	screen).	This	will	make	sure	that	your	
global	pools	are	available	as	soon	as	your	game	starts!	

There	are	many	ways	to	configure	global	pools.	Check	out	the	PoolKit	Workflow	
chapter	for	more	information	on	setting	up	Global	Pools.		

	 	

	 PoolKit	for	Unity	–	Page	13	 	

Setting Up The Pool Component
	

	

The	Pool	script	allows	you	to	setup	a	new	PoolKit	Pool.	It	consists	of	the	Pool,	
Prefabs	and	Statistics	Tabs.	
	

The Pool Tab
	

The	Pool	tab	allows	you	to	name	your	Pool	system	and	define	how	it	works.	
These	are	options	that	are	shared	across	all	of	the	prefabs	that	make	up	the	pool.		
	

Pool	Name	

The	pool	name	is	used	to	access	the	pool	via	the	API.	It	is	best	to	use	something	
descriptive	and	short	such	as	“SFX”,	“Bullets”,	“Enemies”,	etc.	

	
Pool	Type	

The	data	structure	used	for	storing	and	managing	instances	in	the	Pool:	

Automatic	
The	Pool	will	automatically	choose	the	fastest	Pool	Type	based	on	your	settings.	

Fixed	Array	
The	fastest	type	of	Pool.	The	downside	is	no	new	instances	can	be	added	at	runtime	and	lazy	
preloading	is	not	available.	

Dynamic	List	
Very	fast	but	not	the	fastest.	The	benefits	of	this	type	of	pool	are	that	new	instances	can	be	added	
over	time	and	it	can	use	the	lazy	preloading	feature.	

	 PoolKit	for	Unity	–	Page	14	 	

Enable	Pool	Protection	

Pool	protection	can	rebuild	your	pool	in	real-time	if	you	accidentally	destroy	an	
instance	instead	of	despawning	it.	There	is	a	small	performance	cost	for	enabling	
this.		
	

Don’t	Destroy	On	Load	/	Enable	Global	Pool	

Stops	the	Pool	from	being	destroyed	when	changing	scenes,	essentially	making	it	
a	global	Pool.	To	use	Global	Pools,	the	GameObject	must	either	have	no	parent	
object	or	be	a	child	of	a	properly	configured	‘Global	Pool	Group’	(See	PoolKit	
Setup).	For	more	information	on	setting	up	local	and	global	pools,	check	out	the	
PoolKit	Workflow	chapter.	

	
Enable	Delegates	&	Events	

Enabling	this	option	will	tell	the	pool	to	check	if	any	other	scripts	have	
subscribed	to	its	events	via	the	API	and	trigger	them.	Unless	you	actually	need	to	
use	this	feature,	leave	it	unchecked	(you	can	also	override	this	directly	via	the	
API).	Here	is	an	example	of	how	to	subscribe	to	Spawn	and	Despawn	events!	

	

	 	

// Make sure to add: using HellTap.PoolKit;
public string poolName = "MyPool";
Pool findPool;

void OnEnable(){

 // Find the pool (if we haven't already)
 if(findPool==null){ findPool = PoolKit.Find(poolName); }

 // Subscribe to the events

if(findPool!=null){
 findPool.onPoolSpawn += onPoolSpawn;
 findPool.onPoolDespawn += onPoolDespawn;
}

}

void OnDisable(){

 // Unsubscribe from the pool if it was found

if(findPool!=null){
findPool.onPoolSpawn -= onPoolSpawn;

 findPool.onPoolDespawn -= onPoolDespawn;
}

}

// Event called when the pool spawns an instance
void onPoolSpawn(Transform instance, Pool pool) {
 Debug.Log("The Pool " + pool.poolName + " just spawned: " + instance.name);
}

// Event called when the pool despawns an instance
void onPoolDespawn(Transform instance, Pool pool) {
 Debug.Log("The Pool " + pool.poolName + " just despawned: " + instance.name);
}

	 PoolKit	for	Unity	–	Page	15	 	

The Prefabs Tab (Overview)
	

The	Prefabs	tab	allows	you	to	
setup	the	prefabs	that	will	be	
managed	by	the	Pool.	Even	
though	each	of	these	prefabs	
will	share	the	same	Pool	system,	
they	work	independently	with	
their	own	customizable	options	
and	features.	

Each	Prefab	stores	its	data	
internally	in	a	class	called	a	
“Pool	Item”.	These	Pool	Items	
are	presented	in	4	tabs	named	
“Prefab”,	“Instances”,	“Features”	
and	“Advanced”.	

	

	

The Prefabs Tab (Prefab)
	

Prefab	To	Pool	

This	is	where	you	should	drag	and	drop	a	prefab	from	the	Project	pane	to	be	
used	in	the	pool.	
	

Pool	Size	Options	

Depending	on	the	Pool	Type	you’ve	chosen,	the	following	options	are	available:		

Keep	Pool	Sized	Fixed	
Uses	the	“Default	Pool	Size”	as	the	number	of	instances	to	create.		

Expand	Within	Limit	
Uses	the	“Default	Pool	Size”	as	the	initial	number	of	instances	to	create.	If	new	instances	are	
needed,	they	will	be	created	until	the	pool	hits	the	limit	set	in	“Maximum	Pool	Size”.	

Always	Expand	Pool	When	Needed	
Uses	the	“Default	Pool	Size”	as	the	initial	number	of	instances	to	create.	If	new	instances	are	
needed,	the	pool	will	keep	creating	new	ones	without	any	limits.	

	

	 PoolKit	for	Unity	–	Page	16	 	

The Prefabs Tab (Instances)
	

Instance	Scale	

How	should	new	instances	be	
scaled	when	they	are	spawned?	

Ignore:		
No	scaling	is	applied.	
	
Prefab	Scale:		
The	default	scale	of	the	prefab	will	be	
used.		
	
Pool	Scale:		
The	local	scale	of	the	pool	will	be	used.	
	
Custom	Scale:		
You	can	set	a	custom	scale	to	be	used.	
	
Random	Range	Custom	Scale:		
You	can	set	two	custom	scales	to	be	
used	as	a	random	range.	The	
‘Minimum	Spawn	Scale’	will	act	as	the	
lowest	possible	values	allowed	and	
the	‘Maximum	Spawn	Scale’	acts	as	
the	limit.	
	
Random	Range	Proportional	Scale:		
This	is	similar	to	the	previous	‘Random	Range	Custom	Scale’,	except	it	uses	two	numbers	(floats)	
as	the	minimum	and	maximum	range.	This	allows	you	to	have	randomized	results	but	keep	the	
scale	a	uniform	size.	
	
Reset	Scale	On	Every	Spawn:		
Most	options	allow	you	to	re-apply	the	scale	settings	every	time	the	same	instance	is	re-spawned.	
	
	
Instance	Layer	

What	Layer	should	new	instances	be	set	to	when	they	are	spawned?	

Ignore:		
No	Layer	is	set.	
	
Prefab	Layer:		
The	layer	is	set	to	the	default	layer	of	the	prefab.	
	
Pool	Layer:		
The	layer	is	set	to	the	layer	of	the	Pool	gameObject.	
	
Custom	Layer:		
You	can	select	the	layer	to	use	from	a	dropdown	list.	
	
Reset	Layer	On	Every	Spawn:		
Most	options	allow	you	to	re-apply	the	layer	settings	every	time	the	same	instance	is	re-spawned.	
	
	

	 PoolKit	for	Unity	–	Page	17	 	

Keep	Instances	Organized	

This	keeps	instances	parented	to	the	Pool’s	Transform.	This	is	recommended	for	
global	pools	as	it	helps	to	stop	instances	from	being	destroyed	when	changing	
scenes.	Please	note	that	when	Unity	moves	objects	from	one	Transform	to	
another	it	may	have	a	small	affect	on	performance.	If	your	Pools	are	local,	it	is	
recommended	to	turn	this	off	in	finished	builds	for	the	best	performance.	

	

Recycle	Spawned	Instances	

Recycling	is	a	great	feature	(especially	for	Fixed	Size	pools)	that	allow	you	to	re-
use	existing	instances	when	you	run	out.	For	example,	if	you	try	to	spawn	an	
instance	but	you’ve	already	used	the	ones	available	in	the	pool,	this	feature	will	
despawn	the	oldest	instance	and	re-spawn	it	instantly,	giving	you	a	way	of	
continuously	providing	instances	without	going	over	your	pool	limits.	If	this	
feature	is	turned	off	and	you	exceed	your	pool	size,	null	will	be	returned	when	
trying	to	spawn	something	new.	
	 	

	 PoolKit	for	Unity	–	Page	18	 	

The Prefabs Tab (Features)
	

Lazy	Preloading	

Pools	using	the	“Dynamic	List”	
or	“Automatic”	Pool	Type	can	
use	lazy	preloading	to	slowly	
grow	the	pool	over	time.	The	
great	thing	about	this	is	it	can	
be	used	independently	on	the	
specific	Prefabs	that	require	it!	

Enable	Lazy	Preloading:		
Enables	or	Disables	the	feature.	
	
Instances	Created	On	Awake:		
When	the	Pool	runs	its	Awake	method,	
how	many	instances	should	be	
created	right	away?	1	is	the	minimum.	
	
Initial	Delay:		
How	many	seconds	should	the	system	
wait	until	more	instances	are	created?	
	
Instances	To	Create	Per	Pass:		
After	the	initial	delay,	how	many	new	instances	should	be	created	on	each	pass?	This	loop	will	
continue	until	the	pool	has	reached	the	‘Default	Pool	Size’	(found	in	the	Prefab	section).	
	
Delay	Between	Passes	
Every	time	a	pass	of	new	instances	is	created,	how	long	should	the	pool	wait	before	looping	and	
creating	another	pass	of	instances?	This	value	is	in	seconds.	
	
	
Auto-Despawning	

Each	prefab	in	your	pool	can	also	be	setup	with	Auto-Despawning	functionality	
(no	scripting	required!).	This	configuration	is	great	for	instances	that	will	always	
be	used	in	a	simple	and	repetitive	way.		Examples	of	this	would	be	a	blood	squirt,	
puff	of	smoke,	audio	effect,	etc.	If	you	want	to	use	the	same	instances	for	various	
things,	you	should	setup	their	own	Despawner	component	on	the	prefab	itself.	

Enable	Automatic-Despawning:		
Enables	or	Disables	the	feature.	
	
Despawn	Mode:	Countdown	
Every	time	an	instance	of	this	prefab	is	spawned,	a	countdown	timer	will	determine	when	it	will	
automatically	be	despawned.	You	can	set	a	custom	value	in	seconds.	
	
Despawn	Mode:	Countdown	Random	Range	
Every	time	an	instance	of	this	prefab	is	spawned,	a	countdown	timer	with	a	random	range	will	
determine	when	it	will	automatically	be	despawned.	The	‘Min	Countdown	In	Seconds’	
determines	the	lowest	value	and	the	‘Max	Countdown	In	Seconds’	will	set	the	largest	value	to	use.	
These	values	are	counted	in	seconds.	
	
	

	 PoolKit	for	Unity	–	Page	19	 	

Despawn	Mode:	Wait	For	Audio	To	Finish	
If	the	prefab	has	an	AudioSource	component,	you	can	choose	this	option	to	wait	for	the	audio	to	
finish	playing	before	it	is	automatically	despawned.	
	
Despawn	Mode:	Wait	For	Particle	System	To	Finish	
If	the	prefab	has	a	Particle	System	component,	you	can	choose	this	option	to	wait	for	the	particle	
system	to	finish	playing	before	it	is	automatically	despawned.	
	
	
	
	 	

	 PoolKit	for	Unity	–	Page	20	 	

The Prefabs Tab (Advanced)
	

Notifications	

Notifications	allow	you	to	
trigger	custom	functions	in	
your	instances	when	they	are	
spawned	and	despawned.	To	
use	this	feature,	your	prefab	
must	have	a	script	with	public	
methods	that	are	named	
“OnSpawn”	and	“OnDespawn”	

Alternatively,	the	fastest	way	to	
trigger	these	kinds	of	actions	is	
to	use	Unity’s	“OnEnable”	and	
“OnDisable”	methods.	If	you	
need	to	separate	this	out	(for	
example,	to	only	do	certain	
actions	when	pooling	takes	
place),	the	following	methods	
are	available:	

None:		
No	Notifications	will	be	sent	(fastest)	
	
PoolKit	Listeners	[Recommended	Approach]:		 	
The	IPoolKitListener	interface	can	be	added	to	any	MonoBehaviour	script,	which	allows	you	to	
use	PoolKit’s	unique	caching	to	trigger	notifications	with	amazing	speed	(it	is	up	to	3x	faster	than	
using	delegates!).	You	can	easily	add	an	IPoolKitListener	interface	to	any	of	your	own	scripts	like	
this:	

	
When	using	this	feature,	PoolKit	caches	the	prefab	and	all	of	its	children	containing	an	
IPoolKitListener	interface	when	they	are	instantiated.	This	allows	you	to	trigger	ultra-fast	
methods	on	any	script	of	the	prefab	or	its	children	with	great	performance!	
	
Send	Message:		
An	alternative	approach	is	to	have	PoolKit	use	“SendMessage”	to	trigger	“OnSpawn”	and	
“OnDespawn”	methods.	This	will	only	trigger	functions	on	the	main	prefab	but	not	it’s	children.	
Frequently	sending	SendMessage	actions	does	have	a	performance	hit.	
	
BroadCast	Message:		
Similar	to	SendMessage	but	broadcasts	it	to	all	child	objects	also.	This	is	a	much	slower	approach	
and	is	generally	not	recommended.	

using HellTap.PoolKit;

public class MyCoolScript : MonoBehaviour, IPoolKitListener {

 public void OnSpawn(Pool pool){

// Add Spawn stuff here!
}

public void OnDespawn(){

// Add Despawn stuff here!
}

}

	 PoolKit	for	Unity	–	Page	21	 	

Enable	Delegates	&	Events	

Unlike	the	Pool’s	“Enable	Delegates	&	Events”	which	allows	you	to	subscribe	to	
spawning	and	despawning	events,	this	setting	on	the	prefab	allows	you	to	
override	how	PoolKit	instantiates	and	destroys	instances.	This	is	an	advanced	
feature	that	most	people	will	not	need	but	it	is	recommended	to	view	the	
example	scene	and	script	that	comes	with	PoolKit	for	a	better	explanation	on	
how	to	do	this	correctly.		
	
Enable	Instantiation	Events:		
This	allows	you	to	override	how	instances	of	this	prefab	will	be	instantiated	using	your	own	
scripts.	You	can	also	override	this	setting	using	the	API.	You	can	subscribe	to	the	event	like	this:	

	
Enable	Destroy	Events:		
This	allows	you	to	override	how	instances	of	this	prefab	will	be	destroyed	using	your	own	scripts.	
You	can	also	override	this	setting	using	the	API.	You	can	subscribe	to	the	event	like	this:	

// Make sure to add: using HellTap.PoolKit;
public GameObject prefabToOverride = null;
Pool findPool;

void OnEnable(){

 // Find the pool containing the prefab we want to track and subscribe

if(findPool==null){
findPool = PoolKit.GetPoolContainingPrefab(prefabToOverride);

}

if(findPool!=null){ findPool.OnCreateInstance += OnCreateInstance; }
}

void OnDisable(){

 // Unsubscribe from the pool if it was found

if(findPool!=null){ findPool.OnCreateInstance -= OnCreateInstance; }

}

GameObject OnCreateInstance(GameObject prefab) {

// NOTE: Make sure to return the created GameObject!
if (prefab != null){ return Instantiate(prefab); }

 // Return null if something goes wrong
 return null;
}

// Make sure to add: using HellTap.PoolKit;
public GameObject prefabToOverride = null;
Pool findPool;

void OnEnable(){

 // Find the pool containing the prefab we want to track and subscribe

if(findPool==null){
findPool = PoolKit.GetPoolContainingPrefab(prefabToOverride);

}

if(findPool!=null){ findPool.OnDestroyInstance += OnDestroyInstance; }
}

void OnDisable(){

 // Unsubscribe from the pool if it was found

if(findPool!=null){ findPool.OnDestroyInstance -= OnDestroyInstance; }

}

void OnDestroyInstance (GameObject instance) {

// NOTE: Make sure to destroy the instance!
if (instance!= null){ Destroy(instance); }

}

	 PoolKit	for	Unity	–	Page	22	 	

	

The Statistics Tab
	

The	Statistics	tab	allows	you	to	
view	real-time	usage	statistics	of	
your	pool	while	the	game	is	
running	in	the	Editor.	It	can	also	
suggest	ways	to	improve	your	
pools	in	certain	conditions.	
	
Each	prefab	in	the	pool	is	clearly	
separated	in	its	own	section,	
allowing	you	to	focus	in	on	the	
instances	you	want	to	optimize.	
	
To	optimize	your	pools,	you	will	
want	to	find	a	point	where	you	
have	a	pool	very	close	to	the	

maximum	number	of	instances	created	at	once.	For	example,	if	you	only	ever	
spawn	5	instances	of	a	prefab,	but	your	pool	size	is	set	to	use	10	instances,	you	
are	wasting	resources.	You	will	want	to	set	your	pool	size	to	5	or	perhaps	6	in	
order	to	optimize	memory	usage.	The	statistics	tab	offers		a	great	visual	way	to	
do	this.	
	

The	Instances	Spawned	Bar	

The	big	blue	bar	represents	how	many	instances	of	a	certain	object	have	been	
spawned	in	relation	to	its	pool	size.	
	
Last	Spawned	

An	easy	to	read	countdown	since	the	last	time	an	instance	was	spawned.	
	
Last	Despawned	

An	easy	to	read	countdown	since	the	last	time	an	instance	was	despawned.	
	
Last	Instantiated	

An	easy	to	read	countdown	since	the	last	time	an	instance	was	instantiated.	
	
Max	Instances	Spawned	At	Once	

This	value	tracks	the	largest	amount	of	instances	to	be	spawned	at	any	one	time.	
This	is	a	very	helpful	value	that	can	often	give	you	a	good	estimate	of	the	pool	
size	this	prefab	pool	should	be	set	to.	
	
	

	 PoolKit	for	Unity	–	Page	23	 	

Total	Number	Of	Spawns	

This	is	the	number	of	instances	that	have	been	spawned	(including	re-spawns)	
since	the	pool	was	created.	
	
Total	Number	Of	Despawns	

This	is	the	number	of	instances	that	have	been	despawned	since	the	pool	was	
created.	
	
	
	
	
	
	
	
	
	
	
	
	
		
	

	

	 	

	 PoolKit	for	Unity	–	Page	24	 	

Setting Up The Spawner Component
	

	

The	Spawner	script	allows	you	to	setup	a	new	PoolKit	Spawner.	This	powerful	
component	works	by	using	a	similar	concept	to	Unity’s	own	Particle	System,	
except	that	it	spawns	instances	from	your	Pools	rather	than	particles.	The	
Spawner	can	be	used	to	setup	special	effects,	enemy	spawn	points,	weapon	rigs	
and	so	much	more!	It	consists	of	the	Spawner,	Prefabs,	Instances,	Spawn	Points	
and	Events	Tabs.	
	

The Spawner Tab
	

The	Spawner	tab	allows	you	to	setup	the	core	settings	of	the	Spawner.	Firstly,	
you	should	give	it	a	name	to	make	it	accessible	from	the	API.	You	can	setup	
options	such	as	when	the	Spawner	will	start,	how	long	it	will	spawn	instances,	
and	the	time	between	each	spawn	cycle.	
	

Spawner	Name	

The	spawner	name	is	used	to	access	the	spawner	via	the	API.	It	is	best	to	use	
something	descriptive	and	short.	

Spawning	Will	Begin	

You	can	choose	a	variety	of	options	to	determine	when	this	spawner	should	
begin	spawning	instances.	The	following	choices	are	available:	

	 PoolKit	for	Unity	–	Page	25	 	

Automatically	At	Start:		
The	Spawner	will	automatically	begin	when	the	Start()	method	is	fired.	
	
Automatically	At	Start	After	Delay:		
The	Spawner	will	automatically	begin	when	the	Start()	method	is	fired,	and	after	a	custom	delay	
in	seconds	has	completed.	You	can	set	‘Spawner	Delay	In	Seconds’	in	the	Editor	to	determine	the	
delay.	
	 	
Automatically	On	Enable:		
The	Spawner	will	automatically	begin	when	the	OnEnable()	method	is	fired.	The	difference	
between	this	and	the	Start()	method	is	it	can	be	used	as	its	own	spawnable	object.	This	means	
that	when	if	the	Spawner	itself	is	spawned,	OnEnable	is	triggered	and	spawning	will	be	reset.	
	
Automatically	On	Enable	After	Delay:		
This	works	just	like	the	above,	but	allows	you	to	add	a	‘Spawner	Delay	In	Seconds’	to	add	a	
further	delay	before	spawning	begins.	
	
Only	When	Called	By	Script:		
The	spawner	will	only	begin	if	explicitly	called	by	a	script.	You	can	do	that	like	this:	

	
Never:		
This	setting	will	never	allow	the	Spawner	to	start.	It	can	be	used	for	debugging	or	to	manually	
stop	a	Spawner	using	scripting.	
	
	
Spawner	Duration	

The	spawner	duration	allows	you	to	tell	the	Spawner	how	long	to	keep	spawning	
instances.	The	following	options	are	available:	

Play	Once:		
The	spawner	will	spawn	a	single	instance	and	stop.	
	
Repeat	X	Cycles:		
You	can	use	the	‘Spawn	Cycles	To	Repeat’	field	to	set	how	many	spawn	cycles	you	want	the	
spawner	to	create	before	it	stops.	
	
Spawn	X	Instances:		
You	can	use	the	‘Instances	To	Spawn’	field	to	set	how	many	instances	you	want	to	spawn	before	
it	stops.	The	spawner	will	stop	early	if	this	number	is	reached	in	the	middle	of	a	spawn	cycle.	
	
Countdown	Timer:		
You	can	use	the	‘Countdown	In	Seconds’	field	to	set	how	many	seconds	the	spawner	should	wait	
before	it	stops.	
	
Loop	Forever:		
The	Spawner	will	keep	spawning	instances	until	it	is	destroyed	or	stopped	from	a	script.	
	

using HellTap.PoolKit;

public class MyCoolScript : MonoBehaviour {

 void Start{

// Find the Spawner using its Spawner Name and start it!
Spawner mySpawner = PoolKit.GetSpawner("MySpawner");
mySpawner.Play();

}
}

	 PoolKit	for	Unity	–	Page	26	 	

Spawner	Frequency	

The	spawner	frequency	section	allows	you	to	configure	how	often	the	spawner	
should	start	a	new	spawn	cycle:	

Fixed	Interval:		
The	Spawner	will	start	a	new	spawn	cycle	using	a	fixed	interval	of	time.	You	can	use	the	‘Spawn	
Interval’	field	to	determine	how	many	seconds	between	each	spawn	cycle.	

Random	Range:		
The	Spawner	will	start	a	new	spawn	cycle	using	a	random	range	of	time.	You	can	use	the	
‘Minimum	Interval	In	Seconds’	and	‘Maximum	Interval	In	Seconds’	fields	to	setup	a	random	range	
between	each	spawn	cycle.	
	

Instances	To	Spawn	

The	Spawner	works	by	spawning	a	number	of	instances	every	spawn	cycle.	You	
may	choose	whether	the	number	of	instances	spawned	is	a	fixed	number	or	is	
randomized	every	cycle:	

Fixed	Number:		
The	Spawner	will	create	a	fixed	number	of	instances	every	spawn	cycle.	Changing	the	‘Instances	
Per	Cycle’	field	tells	the	spawner	how	many	instances	should	be	spawned.	

Random	Range:		
The	Spawner	will	create	a	random	number	of	instances	every	spawn	cycle.	Changing	the	‘Min	
Instances	Per	Cycle’	field	tells	the	spawner	the	lowest	number	of	instances	to	spawn	and	the	‘Max	
Instances	Per	Cycle’	field	sets	the	upper	limit.	
	

Spawner	Updates	

By	default,	the	spawner	updates	the	selected	prefab,	spawn	point,	randomized	
offset	(if	enabled),	rotations	and	scale	every	time	a	new	instance	is	spawned.	
However,	you	can	create	interesting	effects	and	setups	by	setting	some	of	these	
to	update	only	at	the	start	of	each	new	spawn	cycle.		

As	an	example,	you	could	have	all	instances	of	a	spawn	cycle	be	positioned	at	the	
same	spawn	point	by	setting	the	"Update	Spawn	Point"	field	to	"Per	Cycle"	rather	
than	"Per	Instance".	

Update	Prefab:		
Prefabs	can	be	selected	every	time	an	instance	is	spawned	or	when	a	spawn	cycle	begins.	

Update	Spawn	Point:		
Spawn	Points	can	be	selected	every	time	an	instance	is	spawned	or	when	a	spawn	cycle	begins.	

Update	Random	Offsets:		
Randomized	Offsets	can	be	updated	with	every	new	instance	or	when	a	spawn	cycle	begins.	

Update	Instance	Rotation:		
Rotations	applied	to	instances	can	be	updated	with	every	instance	or	when	a	spawn	cycle	begins.		

Update	Instance	Scale:		
Scales	applied	to	instances	can	be	updated	with	every	instance	or	when	a	spawn	cycle	begins.		 	

	 PoolKit	for	Unity	–	Page	27	 	

The Prefabs Tab
	

The	prefabs	tab	allows	you	to	
setup	which	prefabs	should	
be	spawned	by	the	spawner.	
Their	related	pools	will	be	
found	automatically.	

Please	note	that	you	can	also	
use	prefabs	that	are	not	a	
part	of	a	pool.	When	the	
Spawner	detects	this,	these	
instances	will	be	instantiated	
instead	of	spawned	which	
will	cause	memory	
allocations.	
	

Prefab	Selection	Mode	

You	can	setup	how	prefabs	will	be	selected	every	time	an	instance	should	be	
spawned.	The	following	options	are	available:	

Sequence	Ascending:		
Prefabs	will	be	chosen	using	the	list	in	ascending	order.	
	
Sequence	Descending:		
Prefabs	will	be	chosen	using	the	list	in	descending	order.	
	
Ping	Pong	Ascending:		
Prefabs	will	be	chosen	using	the	list	in	ascending	order.	When	it	gets	to	the	end,	it	will	loop	back	
in	descending	order.	
	
Ping	Pong	Descending:		
Prefabs	will	be	chosen	using	the	list	in	descending	order.	When	it	gets	to	the	beginning,	it	will	
loop	back	to	the	end	in	ascending	order.	
	
Random:		
Prefabs	will	be	chosen	randomly.	
	
Random	With	Weights:		
Prefabs	will	be	chosen	randomly	using	a	Weighted	Chance.	Each	prefab	will	now	have	a	Chance	
slider	allowing	you	give	certain	prefabs	more	of	a	chance	over	others.	Setting	a	prefab	to	0%	
means	it	will	never	be	selected	while	setting	it	to	100%	gives	it	a	full	random	chance.	
	
	
Prefab	List	

The	prefab	list	tells	the	spawner	what	prefabs	should	be	spawned.	Use	the	green	
plus	arrow	to	create	new	prefab	slots	and	the	red	minus	arrows	to	remove	them.	
You	can	also	use	the	vertical	yellow	arrows	to	change	the	order	of	prefabs	in	the	
list.	

	

	 PoolKit	for	Unity	–	Page	28	 	

	
	

The Instances Tab
	

The	instances	tab	allows	you	to	
configure	how	instances	are	setup	
when	they	are	spawned.	Instances	
can	be	rotated,	scaled	and	parented	
to	other	objects	using	a	variety	of	
methods.	
	

Instance	Parent	Mode	

You	can	setup	if	instances	should	be	
parented	to	other	objects	using	a	
variety	of	methods.	Please	note	that	
you	generally	shouldn’t	do	this	to	
instances	in	global	pools.	

Ignore:		
Instances	will	not	be	parented	to	any	objects	and	will	be	ignored.	
	
Re-parent	To	Spawner:		
Instances	will	be	parented	to	the	Transform	of	the	spawner.	
	
Re-parent	To	Spawn	Point:		
Instances	will	be	parented	to	the	currently	selected	spawn	point	(Please	note	this	only	works	if	
you	are	using	a	Transform	List	in	the	Spawn	Points	tab).	
	
Re-parent	To	Custom	Transform:		
Instances	will	be	parented	to	the	Transform	you	set	in	the	‘Custom	Parent	Transform’	field.	
	
	
Instance	Rotation	Mode	

You	can	setup	if	instances	should	be	rotated	when	they	are	spawned.	The	
following	options	are	available:	
	
Prefab	Default:		
Instances	will	be	rotated	using	the	default	rotation	of	its	own	prefab.	
	
Spawner	Rotation:		
Instances	will	be	rotated	using	the	rotation	of	the	Spawner.	
	
Spawn	Point	Rotation:		
Instances	will	be	rotated	using	the	rotation	of	the	last	Spawn	Point	(Please	note	this	only	works	if	
you	are	using	a	Transform	List	in	the	Spawn	Points	tab).	
	
Custom	Euler	Angles:		
Instances	will	be	rotated	using	the	custom	euler	angles	set	in	the	‘Custom	Euler	Angles’	field.	
	
Random	Rotation:		
Instances	will	be	rotated	randomly.	

	 PoolKit	for	Unity	–	Page	29	 	

Offset	Rotation:		
Many	of	the	options	allow	you	to	add	an	additional	rotation	offset	.	
	

Instance	Scale	Mode	

You	can	setup	if	instances	should	be	scaled	when	they	are	spawned.	The	
following	options	are	available:	
	
Pool	Default:		
Scaling	will	be	ignored,	allowing	the	default	settings	of	the	pool	to	be	used.	
	
Prefab	Default:		
Instances	will	be	scaled	using	the	default	scale	of	its	own	prefab.	
	
Spawner	Scale:	
Instances	will	be	scaled	using	the	scale	of	the	spawner.	
	
Custom	Local	Scale:	
Instances	will	be	scaled	using	the	custom	local	scale	in	the	‘Custom	Local	Scale’	field.	
	
Random	Range	Scale:	
Instances	will	be	scaled	using	a	random	range.	The	‘Minimum	Local	Scale’	defines	the	smallest	
values	that	can	be	used	and	the	‘Maximum	Local	Scale’	field	defines	the	largest.	
	
Random	Range	Proportional	Scale:	
This	is	similar	to	the	above	but	uses	2	numbers	(floats)	to	define	the	range.	This	will	randomize	
the	scale	of	the	instance	but	keep	it	uniform.	
	 	

	 PoolKit	for	Unity	–	Page	30	 	

The Spawn Points Tab
	

This	tab	allows	you	to	configure	
where	instances	will	be	spawned.		

You	can	spawn	instances	directly	to	
the	Spawner,	using	a	list	of	
Transform	objects	or	a	list	of	
Vector3	positions	(local	or	global).		

There	are	many	options	to	control	
each	mode	as	well	as	selecting	a	
variety	of	techniques	on	how	the	
next	Spawn	Point	will	be	chosen.	
	

Instances	Will	Be	Spawned	

This	field	allows	you	to	setup	what	
kind	of	spawn	point	system	to	use.	
The	following	options	are	available:	

At	This	Transform:		
This	is	the	simplest	setup.	All	instances	will	be	spawned	at	the	position	of	the	Spawner.	
	
Using	Transform	List:		
This	will	use	a	list	of	Transforms	to	act	as	Spawn	Points.	It	is	generally	a	good	idea	to	use	child	
objects	of	the	Spawner	for	this	purpose	but	this	is	not	a	requirement.	
	
Using	Local	Position	List:		
This	will	use	a	list	of	Vector3	positions	to	act	as	Spawn	Points.	These	positions	will	be	local	to	the	
option	selected	in	‘Spawn	Positions	Local	To’	(by	default	this	would	be	the	Spawner).	
	
Using	Global	Position	List:		
This	will	use	a	list	of	global	Vector3	positions	to	act	as	Spawn	Points.		
	
	
Spawn	Points	Local	To	

This	field	is	visible	when	selecting	to	use	a	local	position	list.	You	can	choose	to	
have	positions	local	to	the	Spawner	or	to	a	custom	Transform	set	in	the	‘Spawn	
Local	To’	field.	
	
	
Spawn	Point	Selection	Mode	

You	can	setup	how	spawn	points	will	be	selected	every	time	an	instance	should	
be	spawned.	The	following	options	are	available:	

Sequence	Ascending:		
Spawn	points	will	be	chosen	using	the	list	in	ascending	order.	
	
Sequence	Descending:		
Spawn	points	will	be	chosen	using	the	list	in	descending	order.	

	 PoolKit	for	Unity	–	Page	31	 	

	
Ping	Pong	Ascending:		
Spawn	points	will	be	chosen	using	the	list	in	ascending	order.	When	it	gets	to	the	end,	it	will	loop	
back	in	descending	order.	
	
Ping	Pong	Descending:		
Spawn	points	will	be	chosen	using	the	list	in	descending	order.	When	it	gets	to	the	beginning,	it	
will	loop	back	to	the	end	in	ascending	order.	
	
Random:		
Spawn	points	will	be	chosen	randomly.	
	
Random	With	Weights:		
Spawn	points	will	be	chosen	randomly	using	a	Weighted	Chance.	Each	spawn	point	will	now	have	
a	‘Chance’	slider	allowing	you	give	certain	spawn	points	more	of	a	chance	over	others.	Setting	a	
the	spawn	point	to	0%	means	it	will	never	be	selected	while	setting	it	to	100%	gives	it	a	full	
random	chance.	
	
	
Transform	List	

This	is	visible	when	‘Instances	Will	Be	Spawned’	is	set	to	‘Using	Transform	List’.	
The	Transform	List	tells	the	spawner	what	Transforms	should	be	used	as	spawn	
points.	Use	the	green	plus	arrow	to	create	a	new	spawn	point	slot	and	the	red	
minus	arrows	to	remove	them.	You	can	also	use	the	vertical	yellow	arrows	to	
change	the	order	of	the	list.	

	

Position	List	

This	is	visible	when	‘Instances	Will	Be	Spawned’	is	set	to	‘Using	Local	Position	
List’	or	‘Using	Global	Position	List’.	The	Position	List	tells	the	spawner	what	
positions	should	be	used	as	spawn	points.	Use	the	green	plus	arrow	to	create	a	
new	spawn	point	slot	and	the	red	minus	arrows	to	remove	them.	You	can	also	
use	the	vertical	yellow	arrows	to	change	the	order	of	the	list.	

	

Notes	About	The	Scene	View	

You	may	notice	that	when	you	select	the	
spawner	in	the	Hierarchy,	you	will	see	gizmos	
displayed	in	the	Scene	view	to	help	you	
understand	how	the	Spawner	is	working.	

The	spawner	name,	waypoint	labels	and	info	
and	more	can	all	be	modified	in	the	PoolKit	
section	of	Unity	Preferences.	

	 	

	 PoolKit	for	Unity	–	Page	32	 	

Randomized	Offsets	

At	the	bottom	of	all	Spawn	Point	modes	is	a	section	that	allows	randomized	
offsets	to	be	used.	This	feature	will	use	a	random	range	of	Vector3	values	and	
apply	it	to	the	position	of	the	current	spawn	point.	This	allows	you	to	have	much	
more	variety	without	the	need	to	setup	multiple	spawn	points.	

Apply	Randomized	Offset:		
If	this	is	checked,	Randomized	Offsets	will	be	enabled.	
	
Minimum	Random	Range:		
The	minimum	random	offset	values	to	be	applied	to	the	current	spawn	point	position.	
	
Random:		
The	maximum	random	offset	values	to	be	applied	to	the	current	spawn	point	position.	

		 	

	 PoolKit	for	Unity	–	Page	33	 	

The Events Tab
	

This	tab	allows	you	to	optionally	
enable	delegates	and	Unity	Events.	
Each	Unity	Event	can	be	enabled	
independently	to	optimize	
performance.	
	

Enable	Delegates	&	Events	

Enable	this	if	you	wish	to	use	the	
API	to	subscribe	to	the	Spawner.	

If	you	do	not	need	this	feature,	make	
sure	to	leave	this	unchecked	to	
optimize	performance.	You	can	
subscribe	to	these	Events	like	this:	

	
Unity	Events	

The	following	Unity	Events	can	be	enabled	in	the	Editor:	

On	Spawner	Spawn	<Transform>:		
This	Unity	Event	will	pass	the	last	instance	created	by	the	spawner	to	a	method	of	your	choice.	
Please	note	that	using	this	excessively	may	have	an	impact	on	performance.	

On	Spawner	Start:		
This	Unity	Event	will	fire	when	the	spawner	has	just	started	spawning	instances.	

On	Spawner	Stop:		
This	Unity	Event	will	fire	when	the	spawner	has	stopped	spawning	instances.	

On	Spawner	Pause:		
This	Unity	Event	will	fire	when	the	spawner	has	been	paused.	

On	Spawner	Resume:		
This	Unity	Event	will	fire	when	the	spawner	has	been	resumed.	

On	Spawner	End:		
This	Unity	Event	will	fire	when	the	spawner	has	finished	its	duration.	For	example,	it	has	
completed	a	countdown	or	repeated	X	times,	etc.	

// using HellTap.PoolKit;

// Find the Spawner using its Spawner Name
Spawner mySpawner = PoolKit.GetSpawner("MySpawner");
if(mySpawner != null){

 // Subscribe To Events

mySpawner.onSpawnerSpawn += onSpawnerSpawn;
mySpawner.onSpawnerStart += onSpawnerStart;
mySpawner.onSpawnerStop += onSpawnerStop;
mySpawner.onSpawnerPause += onSpawnerPause;
mySpawner.onSpawnerResume += onSpawnerResume;
mySpawner.onSpawnerEnd += onSpawnerEnd;

}

	 PoolKit	for	Unity	–	Page	34	 	

Setting Up The Despawner Component
	

	

The	Despawner	Component	allows	you	to	setup	how	a	specific	GameObject	will	
be	despawned.	When	this	happens,	you	can	optionally	spawn	new	objects	in	its	
place	by	configuring	Chain-Spawning.	It	consists	of	the	Despawner,	Chain-
Spawning	and	Events	tabs.	

The	Despawner	tab	is	an	easy	to	use	all-purpose	way	to	automate	the	
despawning	of	instances.		This	can	be	achieved	by	setting	the	‘Despawn	This	
GameObject’	dropdown	menu.	The	following	configurations	are	available:	
	

The Despawner Tab – After Countdown
	

The	despawner	will	automatically	despawn	after	a	countdown	timer.	This	is	set	
in	seconds	using	the	‘Countdown	In	Seconds’	field.		

	

The Despawner Tab – After Countdown With Random Range
	

The	despawner	will	automatically	despawn	after	a	countdown	timer	with	a	
random	range.	This	is	set	in	seconds	using	the	‘	Min	Countdown	In	Seconds’	field	
to	define	the	shortest	timer	and	the	‘Max	Countdown	In	Seconds’	to	set	the	
longest	timer.		

The Despawner Tab – After Particle System Finishes
	

The	despawner	will	wait	for	a	Particle	System	to	finish	before	despawning.	You	
can	choose	whether	the	Particle	System	should	reside	on	the	current	
GameObject	or	a	child	object.	Finally,	you	can	choose	to	have	the	Particle	System	
auto-play	when	it	is	spawned.	

	 PoolKit	for	Unity	–	Page	35	 	

The Despawner Tab – After Audio Source Finishes
	

The	despawner	will	wait	for	an	AudioSource	to	finish	playing	before	despawning.	
You	can	choose	whether	the	AudioSource	should	reside	on	the	current	
GameObject	or	a	child	object.	Finally,	you	can	choose	to	have	the	AudioSource	
automatically	play	when	it	is	spawned.	
	

The Despawner Tab – After Physics Overlap Event
	

The	despawner	can	wait	for	this	
specially	designed	PoolKit	
Physics	event	to	provide	zero	
allocation	collision	events.	

	
	Physics	Overlap	Type	

A	collider	isn’t	required	for	this	
physics	event	to	work.	This	
setup	works	especially	well	for	
projectiles	but	can	also	be	used	
with	colliders	too.	A	red	shape	
will	be	drawn	in	the	Scene	view	
to	show	you	a	visualization	of	
the	overlapping	collision	shape.		

Sphere	3D	
A	3D	sphere	will	be	used	to	check	for	
collisions.	

Circle	2D	
A	2D	Circle	will	be	used	to	check	for	collisions	in	2D	based	games.	

Box	3D	
A	3D	cube	will	be	used	to	check	for	collisions.		

Box	2D	
A	2D	box	will	be	used	to	check	for	collisions	in	2D	based	games.		

	

Collide	With	Triggers	

3D	Colliders	allow	you	to	also	collide	with	triggers.	The	options	are:	

Use	Global	
Uses	the	global	settings	setup	in	the	Physics	screen.	

Ignore	
All	colliders	that	set	as	triggers	will	be	ignored.	

Collide	
Triggers	will	also	be	checked	for	collisions.	

	 PoolKit	for	Unity	–	Page	36	 	

Local	Position	Offset	

Allows	you	to	change	the	initial	position	of	the	physics	shape.	

	
Radius	/	Scale	

Allows	you	to	change	the	size	of	the	physics	shape.	

	

Options	

The	following	options	are	also	available	

Reset	Velocities	On	Spawn	
If	this	GameObject	has	an	attached	Rigidbody,	you	can	reset	its	velocities	every	time	it	is	
spawned.	

Use	Countdown	
You	can	choose	to	also	activate	a	countdown	to	despawn	the	instance.	This	is	set	in	seconds	using	
the	‘Despawn	Countdown’	field.	

	

Filter	Layers	

You	can	filter	the	collisions	using	this	LayerMask.	Only	the	layers	that	are	
checked	in	the	list	will	be	allowed	to	despawn	the	instance.	

	

Filter	Tags	

You	can	also	filter	the	collisions	using	Tags	as	well	as	the	LayerMask.	Only	the	
Tags	that	are	in	the	list	will	be	allowed	to	despawn	the	instance.	New	Tags	can	be	
added	by	pressing	the	green	‘+’	button.	If	no	Tags	are	set,	this	feature	will	be	
ignored.	

	

	

	

	

	

	

	

	

	

	

	 PoolKit	for	Unity	–	Page	37	 	

The Despawner Tab – After Collision Event
	

The	despawner	can	wait	for	
Unity’s	built	in	collision-based	
physics	events	to	despawn.		

	
Source	Collider	

Firstly,	you	need	to	define	what	
Collider	the	despawner	should	
check.	The	following	options	are	
available:	

This	GameObject	
The	despawner	should	use	a	Collider	
found	on	this	GameObject.	

Another	Child	GameObject:		
This	despawner	should	use	a	Collider	
found	on	a	child	GameObject.	You	can	
set	this	using	the	‘Use	This	GameObject’	
field.	

Manual	Setup	
It	is	important	to	note	that	Unity’s	physics	events	(such	as	OnCollisionEnter,	OnCollisionStay,	
etc.)	all	create	small	amounts	of	garbage	in	memory	when	triggered.	Unfortunately,	there	doesn’t	
seem	to	be	a	way	around	this	for	the	moment	(other	than	using	PoolKit’s	Physics	Overlap	Event	
which	doesn’t	generate	any	allocations	at	all).	Because	of	this	Unity	limitation,	PoolKit	uses	a	
unique	optimization	method	where	it	will	create	specific	Despawner	Events	at	runtime	based	on	
the	physics	events	you	choose.	In	other	words,	this	means	that	after	the	instance	is	instantiated,	
you	should	get	the	same	kind	of	performance	as	you	would	with	a	custom	script!	

Advanced	users	can	use	the	‘Manual	Setup’	setting	to	manually	place	‘Despawner	Event’	
components	on	specific	child	objects	to	customize	the	source	of	colliders	(for	example,	to	use	
more	than	one	source	collider).	These	components	can	be	found	in	the	Plugins	>	Hell	Tap	
Entertainment	>	PoolKit	>	Despawner	folder.	You	should	use	the	component	with	the	relevant	
physics	event.	For	example,	if	you	wanted	to	track	OnCollisionEnter,	you	would	use	the	
DespawnerEvent_OnCollisionEnter	component.		

	

	

You	will	also	need	to	set	the	despawner	field	in	the	Editor	to	reference	the	Despawner.	The	
screenshot	above	shows	how	you	would	manually	setup	an	OnCollisionEnter	event.	

Options	

You	can	choose	which	Physics	Events	will	despawn	the	GameObject.	You	can	
optionally	reset	the	velocity	on	Rigidbodies	when	they	are	spawned	as	well	as	
using	a	countdown	in	addition	to	the	Physics	Events.	

Use	On	Collision	Enter	
The	despawner	will	track	collisions	on	the	OnCollisionEnter	event.	

	 PoolKit	for	Unity	–	Page	38	 	

	
Use	On	Collision	Stay	
The	despawner	will	track	collisions	on	the	OnCollisionStay	event.	

Use	On	Collision	Exit	
The	despawner	will	track	collisions	on	the	OnCollisionExit	event.	

Reset	Velocities	On	Spawn	
When	this	instance	is	spawned,	the	despawner	will	attempt	to	reset	the	velocity	on	the	Rigidbody	
found	on	the	source	collider.	

Use	Countdown	
In	addition	to	tracking	the	above	physics	events,	you	can	choose	to	also	activate	a	countdown	to	
despawn	the	instance.	This	is	set	in	seconds	using	the	‘Despawn	Countdown’	field.	

	

Filter	Layers	

You	can	filter	the	collisions	using	this	LayerMask.	Only	the	layers	that	are	
checked	in	the	list	will	be	allowed	to	despawn	the	instance.	

	

Filter	Tags	

You	can	also	filter	the	collisions	using	Tags	as	well	as	the	LayerMask.	Only	the	
Tags	that	are	in	the	list	will	be	allowed	to	despawn	the	instance.	New	Tags	can	be	
added	by	pressing	the	green	‘+’	button.	If	no	Tags	are	set,	this	feature	will	be	
ignored.	

The Despawner Tab – After Trigger Event

‘After	Trigger	Event’	works	almost	identically	to	the	After	Collision	Event.	The	
only	difference	is	a	difference	in	some	of	the	Physics	Events	that	are	available:	

Use	On	Trigger	Enter	
The	despawner	will	track	collisions	on	the	OnTriggerEnter	event.	

Use	On	Trigger	Stay	
The	despawner	will	track	collisions	on	the	OnTriggerStay	event.	

Use	On	Trigger	Exit	
The	despawner	will	track	collisions	on	the	OnTriggerExit	event.	

	

The Despawner Tab – After Collision 2D Event

‘After	Collision	2D	Event’	works	almost	identically	to	the	After	Collision	Event.	
The	only	difference	is	a	Collider2D	must	be	present	on	the	source	collider	and	
the	set	of	Physics	Events	that	are	available:	

Use	On	Collision	Enter	2D	
The	despawner	will	track	collisions	on	the	OnCollision2DEnter	event.	

	 PoolKit	for	Unity	–	Page	39	 	

Use	On	Collision	Stay	2D	
The	despawner	will	track	collisions	on	the	OnCollision2DStay	event.	

Use	On	Collision	Exit	2D	
The	despawner	will	track	collisions	on	the	OnCollision2DExit	event.	

	

The Despawner Tab – After Trigger 2D Event

‘After	Trigger	2D	Event’	works	almost	identically	to	the	After	Collision	Event.	The	
only	difference	is	a	Collider2D	must	be	present	on	the	source	collider	and	the	set	
of	Physics	Events	that	are	available:	

Use	On	Trigger	Enter	2D	
The	despawner	will	track	collisions	on	the	OnTrigger2DEnter	event.	

Use	On	Trigger	Stay	2D	
The	despawner	will	track	collisions	on	the	OnTrigger2DStay	event.	

Use	On	Trigger	Exit	2D	
The	despawner	will	track	collisions	on	the	OnTrigger2DExit	event.	

	

The Despawner Tab – After Raycast Event

‘After	Raycast	Event’	shares	many	settings	with	the	other	events.	However,	there	
are	specific	options	for	setting	up	the	raycast:	

Raycast	Direction	
The	direction	of	the	raycast.	This	should	be	a	normalized	
Vector3.		

Raycast	Distance	
The	maximum	distance	of	the	raycast.	

Maximum	Hits	
The	maximum	number	of	hits	to	test	against.	

Collide	With	Triggers	
Should	this	raycast	collide	with	triggers?	

	

	

	 PoolKit	for	Unity	–	Page	40	 	

The Despawner Tab – After Raycast 2D Event

‘After	Raycast	2D	Event’	shares	many	settings	with	the	other	events.	However,	
there	are	specific	options	for	setting	up	the	raycast:	

Raycast	Direction	
The	direction	of	the	raycast.	This	should	be	a	normalized	
Vector2.		

Raycast	Distance	
The	maximum	distance	of	the	raycast.	

Maximum	Hits	
The	maximum	number	of	hits	to	test	against.	

Minimum	Z	Depth	
Only	include	objects	with	a	Z	coordinate	(depth)	greater	
than	or	equal	to	this	value.	
	
Maximum	Z	Depth	
Only	include	objects	with	a	Z	coordinate	(depth)	less	than	
or	equal	to	this	value.	

The Despawner Tab – After Called By Script
	

The	despawner	will	only	despawn	if	a	script	tells	it	to.	The	purpose	of	this	setup	
is	so	users	can	still	take	advantage	of	the	Chain	Spawning	and	Events	tab	while	
using	a	totally	custom	way	of	despawning.	You	can	manually	send	actions	to	the	
Despawner	like	this:	

	 	

// using HellTap.PoolKit;

// Cache the despawner on this GameObject and tell it to despawn,
Despawner myDespawner = gameObject.GetComponent<Despawner>();
if(myDespawner!= null){ myDespawner.Despawn(); }

	 PoolKit	for	Unity	–	Page	41	 	

The Chain-Spawning Tab
	

This	tab	allows	you	to	setup	how	new	
prefabs	will	be	spawned	when	this	
GameObject	is	despawned.	

You	can	setup	any	number	of	prefab	
slots	to	spawn,	each	with	their	own	
custom	settings.	You	can	also	setup	
multiple	slots	using	the	same	prefab	
with	different	settings.	
	

Prefab	To	Spawn	

Drag	and	drop	a	prefab	from	the	project	
pane	in	order	to	spawn	it.	

	
Spawn	Options	

The	following	Spawn	Options	are	available:	

Always	Spawn	
This	prefab	will	always	be	spawned.	

Spawn	Only	On	Physics	Event	
This	prefab	will	only	be	spawned	if	a	Physics-based	Event	(OnCollisionEnter,	OnTriggerStay,	etc.)	
triggered	the	despawning	process.		

Spawn	Except	On	Physics	Event	
This	prefab	will	only	be	spawned	if	a	Physics-based	Event	(OnCollisionEnter,	OnTriggerStay,	etc.)	
did	NOT	trigger	the	despawning	process.		

Never	Spawn	
This	prefab	will	never	be	spawned	under	any	condition.	This	is	useful	for	debugging	and	custom	
setups.	Please	note	that	if	this	isn’t	needed	in	finished	builds,	it’s	much	better	to	remove	it	from	
the	editor	altogether	to	save	memory.	

	
Use	Physics	Event	Filters	

If	you're	using	a	physics	event,	you	can	enable	advanced	filtering	options	to	have	
chain	spawning	work	with	specific	layers,	tags	and	GameObject	names.	This	
option	will	enable	the	following	three	filtering	options:	

	

Filter	Layers	

You	can	filter	chain	spawning	using	this	LayerMask.	Only	the	layers	that	are	
checked	in	the	list	will	be	allowed	to	spawn	new	prefabs	in	this	entry.	

	

	 PoolKit	for	Unity	–	Page	42	 	

Filter	Tags	

You	can	also	filter	chain	spawning	using	Tags.	Only	the	Tags	that	are	in	the	list	
will	be	allowed	to	spawn	new	prefabs	in	this	entry.	New	Tags	can	be	added	by	
pressing	the	green	‘+’	button.	If	no	Tags	are	set,	this	filter	will	be	ignored.	

	

Filter	Names	

If	you	would	like	to	only	chain	spawn	instances	if	the	object	collided	with	a	
specific	GameObject,	you	can	use	this	feature.		Only	the	names	that	are	in	the	list	
will	be	allowed	to	spawn	new	prefabs.	New	names	can	be	added	by	pressing	the	
green	‘+’	button.	If	no	names	are	set,	this	filter	will	be	ignored.	

	

Spawn	Position	At	

Choose	where	this	instance	will	be	spawned.	The	following	options	are	available:	

This	Transform	
The	new	instance	will	be	spawned	at	the	same	position	as	the	despawner.	

Another	Child	Transform	
The	new	instance	will	be	spawned	at	the	same	position	of	a	child	Transform	set	in	the	‘Another	
Child	Transform’	field.	

Last	Collision	
The	new	instance	will	be	spawned	using	the	position	of	the	last	collision	point.	If	this	cannot	be	
determined,	the	position	of	the	despawner	will	be	used	instead.	

	

Local	Position	Offset	

After	the	‘Last	Position	Offset’	has	been	calculated,	a	local	position	offset	will	be	
applied	to	the	final	position.	

	

Apply	Randomized	Offset	

You	can	add	some	randomization	to	the	final	position	by	setting	up	a	randomized	
range.	This	allows	you	to	use	the	‘Minimum	Random	Range’	field	to	set	the	
minimum	offset	and	the	‘Maximum	Random	Range’	field	for	the	maximum	offset.	

	

	 	

	 PoolKit	for	Unity	–	Page	43	 	

Rotate	Instance	Using	

Choose	how	this	instance	will	be	rotated.	The	following	options	are	available:	

Prefab	Default	
The	new	instance	will	be	rotated	using	its	default	prefab	rotation.	

This	Transform	Rotation	
The	new	instance	will	be	rotated	using	the	rotation	of	the	despawner.	

Custom	Euler	Angles	
The	new	instance	will	be	rotated	using	the	custom	euler	angles	set	in	the	‘Custom	Euler	Angles’	
field.	

Random	Rotation	
The	new	instance	will	be	rotated	randomly.	

	

Offset	Rotation	

An	additional	rotation	can	be	applied	after	the	‘Rotate	Instance	Using’	setting.	

	

Scale	Instance	Using	

Choose	how	this	instance	will	be	scaled.	The	following	options	are	available:	

Prefab	Default	
The	new	instance	will	be	scaled	using	its	default	prefab	scale.	

Pool	Default	
The	new	instance	will	not	be	scaled,	and	use	the	default	settings	applied	by	the	pool.	

This	Transform	Scale	
The	new	instance	will	be	scaled	using	the	scale	of	the	despawner.	

Custom	Local	Scale	
The	new	instance	will	be	scaled	using	the	custom	scale	set	in	the	‘Custom	Local	Scale’	field.	

Random	Range	Scale	
The	new	instance	will	be	scaled	using	a	random	range.	The	‘Minimum	Local	Scale’	field	will	
determine	its	smallest	size	and	the	‘Maximum	Local	Scale’	will	determine	is	largest	size.	

Random	Range	Proportional	Scale	
This	is	similar	to	the	previous	option	except	two	floats	will	be	used	to	determine	the	range.	This	
randomizes	the	size	of	the	instance	but	keeps	it	to	a	uniform	scale.	

	

	 	

	 PoolKit	for	Unity	–	Page	44	 	

Process	Scale	Options	

The	custom	scaling	options	can	also	be	processed	to	make	it	relative	to	the	
Transform’s	local	scale.	This	allows	you	to	scale	spawned	instances	in	very	
interesting	ways.	The	following	options	are	available:	

None	
No	processing	takes	place.	The	results	are	used	directly.	

Multiply	With	Local	Scale	
The	result	is	multiplied	with	every	vector	of	the	local	scale.	

Multiply	With	Smallest	Local	Scale	Vector	
The	result	is	multiplied	with	the	smallest	vector	of	the	local	scale.	

Multiply	With	Largest	Local	Scale	Vector	
The	result	is	multiplied	with	the	largest	vector	of	the	local	scale.	

Multiply	With	Average	Local	Scale	Vector	
The	result	is	multiplied	using	the	average	of	all	three	vectors	of	the	local	scale.	

Multiply	With	Local	Scale	X	
The	result	is	multiplied	using	the	X	vector	of	the	local	scale.	

Multiply	With	Local	Scale	Y	
The	result	is	multiplied	using	the	Y	vector	of	the	local	scale.	

Multiply	With	Local	Scale	Z	
The	result	is	multiplied	using	the	Z	vector	of	the	local	scale.	

	

Times	To	Spawn	

This	value	sets	how	many	times	a	new	instance	should	be	created	using	these	
settings.	This	works	extremely	well	with	the	‘Randomized	Offset’	option	as	it	
allows	you	to	create	several	instances	with	slight	variations	in	position.	

You	can	choose	between	a	fixed	number	of	instances	to	spawn	or	a	random	
range.	

	 	

	 PoolKit	for	Unity	–	Page	45	 	

The Events Tab
	

This	tab	allows	you	to	optionally	
enable	delegates	and	Unity	Events.	
Each	Unity	Event	can	be	enabled	
independently	to	optimize	
performance.	
	

Enable	Delegates	&	Events	

Enable	this	if	you	wish	to	use	the	
API	to	subscribe	to	the	Despawner.	

If	you	do	not	need	this	feature,	make	
sure	to	leave	this	unchecked	to	
optimize	performance.	You	can	
subscribe	to	these	Events	like	this:	

	
Unity	Events	

The	following	Unity	Events	can	be	enabled	in	the	Editor:	

On	Despawner	Despawn:		
This	Unity	Event	will	trigger	when	the	Despawner	is	about	to	despawn.	

On	Despawner	Collided	<GameObject>:		
This	Unity	Event	will	pass	the	last	GameObject	that	collided	with	the	despawner.	Please	note	that	
using	this	excessively	may	have	an	impact	on	performance.	

On	Despawner	Chain	Spawn	<Transform>:		
This	Unity	Event	will	pass	the	last	instance	created	by	the	Chain-Spawner	to	a	method	of	your	
choice.	Please	note	that	using	this	excessively	may	have	an	impact	on	performance.	

	

	

	

	

	

// using HellTap.PoolKit;

// Cache the Despawner
Despawner myDespawner = gameObject.GetComponent<Despawner>();
if(myDespawner!= null){

 // Subscribe To Events

mySpawner.onDespawnerDespawn += onDespawnerDespawn;
mySpawner.onDespawnerCollided += onDespawnerCollided;
mySpawner.onDespawnerChainSpawn += onDespawnerChainSpawn;

}

	 PoolKit	for	Unity	–	Page	46	 	

Setting Up The PoolKit Global Pools Asset
	

	

The	“PoolKit	Global	Pools”	asset	allows	you	to	setup	which	global	pools	will	be	
automatically	created	when	the	game	starts.	This	makes	global	pools	insanely	
easy	to	setup.	You	can	use	as	many	global	pools	as	you	want	or	none	at	all.	

The	asset	can	be	easily	accessed	through	the	menu	by	selecting	GameObject	>	
PoolKit	>	Setup	Global	Pools.	

To	add	a	global	pool	to	the	list,	press	the	green	“+”	button	to	add	a	new	slot.	You	
can	then	drag	and	drop	a	prefab	into	the	list.	The	yellow	arrows	allow	you	to	re-
arrange	the	order	while	the	red	“-“	button	deletes	items	from	the	list.	

To	correctly	setup	your	global	pools,	you	should	stick	to	these	guidelines:	

- The	prefabs	you	drag	in	must	have	a	Pool	component.	
- The	Pool	components	must	be	configured	to	be	global	(‘Don’t	Destroy	On	

Load’	is	checked)	
- Every	pool	must	have	a	unique	Pool	Name.	
- You	should	not	drag	in	custom	global	pool	groups	(that	approach	is	

designed	to	be	setup	manually).	Only	use	individual	Pool	prefabs.	

The	visual	editor	will	alert	you	if	it	detects	any	problems	and	offer	suggestions.	
	

NOTE:	The	‘PoolKit	Global	Pools’	asset	must	always	be	located	at	Plugins	>	Hell	Tap	Entertainment	>	PoolKit	
>	Global	>	Resources	>	PoolKit	Global	Pools.	When	accessing	it	using	the	menu	command,	PoolKit	will	re-
create	it	if	the	file	is	accidentally	deleted	or	moved.	

	 	

	 PoolKit	for	Unity	–	Page	47	 	

Setting Up The PoolKit Preferences
	

	

The	PoolKit	Preferences	pane	allows	you	to	customize	how	the	PoolKit	editors	
are	presented	to	you,	as	well	as	how	Spawners	are	visualized	in	the	scene	view.	
The	following	settings	are	available:	

	
PoolKit	Editor	Settings	
	
Show	PoolKit	Headers	
This	toggles	the	icon	and	info	at	the	top	of	the	PoolKit	Editors.	
	
Show	Tab	Headers	
This	toggles	the	icon	and	info	underneath	tabs	in	the	PoolKit	Editors.	
	
Show	Helpful	Notes	
This	toggles	the	helpful	notes	(in	yellow	boxes)	across	the	PoolKit	Editors.	This	is	helpful	when	
you	become	accustomed	to	PoolKit	and	want	to	streamline	the	Editors	to	take	up	less	space.	

	
PoolKit	Auto-Spawner	Settings	

Only	Show	When	Selected	
This	allows	you	to	always	show	Spawner	gizmos	in	the	Scene	view,	even	if	it	is	not	selected.	

Scale	Gizmos	
Icons	will	be	scaled	with	distance	as	you	move	around	in	the	Scene	view.	

Show	Spawn	Point	Labels	
Information	about	Spawn	points	will	be	shown	in	the	Scene	view.	

Show	Name	Of	Spawner	
The	name	of	the	spawner	is	shown	in	the	Scene	view.	

UI	Line	Width	
This	sets	how	the	close	the	dotted	lines	appear	in	the	Scene	view.	

	 PoolKit	for	Unity	–	Page	48	 	

UI	Line	And	Label	Color	
This	sets	the	color	tint	used	to	display	dotted	lines	and	some	of	the	descriptive	text.	

	

Reset	Default	Settings	

Reset	PoolKit	Preferences	Button	
Pushing	this	button	allows	you	to	revert	the	PoolKit	Preferences	to	the	default	settings.	

	 	

	 PoolKit	for	Unity	–	Page	49	 	

PoolKit Workflow And Setup Tips
	
PoolKit	has	a	seamless	and	flexible	approach	to	its	workflow,	allowing	you	to	
build	pools	pretty	much	anywhere	and	anyhow.	However,	here	are	some	
recommendations	and	tips	on	setting	up	your	Pools:	

	

Pool Types
	
There	are	3	options	for	Pool	Types	in	PoolKit:	“Automatic”,	“Fixed	Array”	and	
“Dynamic	List”.	Automatic	will	pick	the	best	data	structure	for	you	based	on	the	
features	you’ve	chosen	in	your	pool	but	you	can	also	explicitly	set	which	type	
you’d	like	to	use	too.	

The	Fixed	Array	is	the	fastest	type	of	Pool.	It	uses	a	fixed	built-in	array,	which	is	
crazy	fast	but	the	drawback	is	that	no	new	instances	can	be	added	at	runtime	
(with	the	exception	of	Pool	Protection	if	it	is	turned	on).	This	also	means	that	
lazy	preloading	is	incompatible	with	this	Pool	Type.	These	pools	are	usually	best	
for	non-essential	items	such	as	particle	effects,	background	objects,	and	
generally	things	that	aren’t	game-critical.	However,	with	some	planning	and	
when	combined	with	features	such	as	instance	recycling,	you	can	actually	create	
critical	game	objects	too!	A	great	example	can	be	found	in	the	PoolKit	“Spaceship	
Demo	Scene”	where	a	Spawner	fires	lazers	from	the	player’s	ship.	

The	Dynamic	List	type	is	still	very	fast	but	not	as	fast	as	the	Fixed	Array.	Its	
advantage	is	that	it	can	grow	instances	in	real-time	and	can	use	lazy	preloading.	
This	is	typically	best	for	things	like	bullets	and	other	objects	that	you	want	to	
make	sure	are	created	even	if	a	new	instance	must	be	created	on	the	fly.	

The	trick	to	fast	pools	is	to	foresee	and	create	the	number	of	needed	instances	
before	you	spawn	them.	You	can	use	the	Pool	Statistics	tab	to	help	you	figure	out	
your	usage	needs	in	the	Editor.	If	you	can	get	away	with	Fixed	Arrays,	always	
choose	that	for	the	best	performance!	

	

Local Pools
	
Firstly,	if	you’re	new	to	pooling	(or	programming	altogether),	it	is	recommended	
to	stick	to	local	pools.	Local	pools	are	often	more	flexible	and	reduces	complexity.	
A	local	pool	only	exists	in	a	single	scene	and	not	globally	throughout	the	game.	In	
other	words,	it	does	not	have	the	“Don’t	Destroy	On	Load”	option	checked	and	
will	be	destroyed	when	changing	levels.	

If	you	need	to	access	the	same	pool	across	different	scenes,	you	can	still	do	it	
using	a	“local”	approach.	Simply	create	a	prefab	of	the	relevant	pool	and	
manually	place	it	in	every	scene	that	needs	to	access	it.	This	will	keep	things	
simple	and	make	sure	that	you	don’t	accidentally	destroy	any	instances	when	
changing	scenes.	It’s	also	easier	to	debug	your	games	and	gives	you	the	most	
flexibility	in	the	design	of	your	pools	on	a	scene-by-scene	basis.	

	 PoolKit	for	Unity	–	Page	50	 	

Global Pools
	
The	easiest	way	to	setup	a	global	pool	is	to	create	it	through	the	menu	using	
GameObject	>	PoolKit	>	Create	Global	Pool.	This	will	create	a	Pool	that	is	
already	setup	to	be	global	by	default	(it	will	not	be	destroyed	when	changing	
scenes).	

You	can	then	save	the	pool’s	GameObject	as	a	prefab	and	add	it	to	the	‘PoolKit	
Global	Pools’	list	(found	at	GameObject	>	PoolKit	>	Setup	Global	Pools).	

Doing	this	will	automatically	create	the	pool	when	the	game	is	started	(and	when	
pressing	play	in	the	Editor,	making	it	really	easy	to	test	and	debug	your	games!).	

	
Notes On Setting Up Global Pools
	
On	each	prefab	of	your	global	pools	under	the	Instances	tab,	make	sure	that	
“Keep	Instances	Organized”	is	enabled.	This	helps	instances	stay	protected	when	
changing	scenes.	

One	thing	to	note	is	you	should	take	care	NOT	to	parent	any	of	these	instances	
outside	of	the	pool’s	own	Transform.	If	you	try	to	change	scenes	this	could	cause	
missing	instances	and	break	your	pools.	

The	easiest	fix	for	this	is	to	turn	on	Pool	Protection,	which	can	rebuild	your	pools	
in	real-time	but	it	comes	at	a	small	performance	cost.	To	keep	things	as	fast	as	
possible	(without	Pool	Protection),	you	will	need	to	take	care	not	to	change	the	
parent	of	these	instances	and	to	call	the	PoolKit.DespawnAllGlobalPools()	
method	when	changing	scenes.	

	
[Advanced] Using ‘Global Pool Groups’
	
If	you	need	a	custom	approach	to	handling	global	
pools,	you	can	do	so	using	‘Global	Pool	Groups’.		

This	approach	is	best	suited	for	those	who	want	to	
manually	handle	loading	and	unloading	a	group	of	
global	pools	at	specific	times	(rather	than	automatically	having	them	load	when	
you	start	the	game).		

You	can	create	a	global	pool	within	its	own	Global	Pool	Group	using	the	
GameObject	menu:	GameObject	>	PoolKit	>	Create	Global	Pool	Group.	

You	will	notice	that	this	option	will	create	a	new	pool	inside	of	a	‘Global	Pool	
Group’	in	the	Hierarchy	pane.	This	automatically	configures	the	PoolKitSetup	
component	on	the	parent	object	and	the	Pool	component	on	the	child	object.	

You	can	add	more	pools	to	the	group	by	duplicating	the	pool	or	by	using	the	
menu	item	again	(which	will	ask	if	you	want	to	add	a	new	pool	to	the	existing	
group	or	create	a	totally	new	group	alongside	it).		

	 PoolKit	for	Unity	–	Page	51	 	

Once	you’ve	setup	the	pool	group,	it’s	recommended	to	save	it	as	a	prefab	so	you	
can	easily	create	it	via	script	or	place	it	in	a	specific	level	of	your	choice.		

	

Pool Planning
	
Here	are	some	considerations	when	designing	your	pools:	

- Always	stick	to	Fixed	Array	Pools	if	possible.	The	‘Instance	Recycling’	
feature	is	your	friend	here!	

- Rather	than	just	having	one	Dynamic	List	Pool	that	can	do	everything,	try	
having	a	Fixed	Array	Pool	AND	a	Dynamic	List	pool.	That	way	you	can	still	
benefit	from	the	instances	that	don’t	need	dynamic	resizing.	

- Even	though	you	can	create	as	many	pools	as	you	want,	there	is	some	
overhead	in	running	them.	Try	to	minimize	the	number	of	pools	you’re	
using.	

- Don’t	waste	memory	by	making	your	pools	too	large.	Use	the	Pool’s	
statistics	screen	to	help	figure	out	the	right	size	of	each	prefab.	

- Only	enable	features	on	Pools	and	Prefabs	if	you’re	actually	using	it.		
- It’s	generally	not	a	good	idea	to	use	Automatic-Despawning	as	well	as	a	

Despawner	component	on	a	prefab.	Use	one	or	the	other.	
	

Example Of The Fastest Pool
	
Below	is	an	overview	of	the	settings	to	create	the	fastest	type	of	PoolKit	pool:	

Pool	

Pool	Type:		 	 	 	 	 	 	 Fixed	Array	
Enable	Pool	Protection:		 	 	 false	
Don’t	Destroy	On	Load:		 	 	 false	
Enable	Delegates	&	Events:			 false	

Prefab	

Pool	Size	Options:		 	 	 	 	 Keep	Pool	Size	Fixed	
Instance	Scale:	 	 	 		 	 	 Ignore	
Instance	Layer:	 	 	 		 	 	 Ignore	
Keep	Instances	Organized:	 	 Ignore	
Recycle	Spawned	Instances:		 false	
Lazy	Preloading:	 	 	 	 		 false	
Automatic	Despawning:	 	 	 false	
Notification	Mode:	 	 	 	 	 None	
Enable	Instantiation	Events:	 false	
Enable	Destroy	Events:	 	 	 false	

	

	

	 PoolKit	for	Unity	–	Page	52	 	

PoolKit API

PoolKit	has	methods	and	events	that	are	available	via	the	API.	Remember	to	add	
“using	HellTap.PoolKit;”	in	C#	scripts	or	“import	HellTap.PoolKit;”	in	
Unityscripts.	
	

PoolKit API
	
The	PoolKit	Static	class	has	methods	and	delegates	that	are	always	available.	
Some	methods	have	alternate	names	so	you	can	choose	the	style	you	prefer!		
	

Caching	Pools	

PoolKit.GetPool(string	poolName)	:	Returns	Pool		
The	simplest	way	to	find	and	cache	a	pool	is	by	finding	it	by	name:	
NOTE:	You	can	also	use	alternate	method	names	such	as:	PoolKit.Get(),	PoolKit.Find()	and	PoolKit.FindPool()	

	
PoolKit.GetPoolContainingPrefab(GameObject	prefabGameObject)	:	Returns	Pool	
PoolKit.GetPoolContainingPrefab(Transform	prefabTransform)	:	Returns	Pool	
PoolKit.GetPoolContainingPrefab(string	prefabName)	:	Returns	Pool	

You	can	also	find	a	Pool	by	searching	for	a	prefab	it	controls,	like	this:	
NOTE:	You	can	also	use:	FindPoolContainingPrefab()	
	

PoolKit.GetPoolContainingInstance(GameObject	instanceGameObject)	:	Returns	Pool	
PoolKit.GetPoolContainingInstance(Transform	instanceTransform)	:	Returns	Pool	
	
Another	way	of	finding	a	pool	is	by	searching	for	an	instance	it	has	already	created.	Please	note	
that	this	is	quite	a	complex	method	and	should	generally	only	be	used	when	caching,	like	this:	
NOTE:	You	can	also	use:	FindPoolContainingInstance()	

	
Caching	Spawners	

PoolKit.GetSpawner(string	spawnerName)	:	Returns	Spawner		
You	can	easily	find	and	cache	a	spawner	by	finding	it	by	name:	
NOTE:	You	can	also	use:	FindSpawner()	

// Cache a Pool by Name
Pool myPool = PoolKit.GetPool("MyPool");

// Cache a pool by finding a specific prefab it controls (by GameObject)
Pool myPool = PoolKit.GetPoolContainingPrefab(prefabGameObject);

// Cache a pool by finding a specific prefab it controls (by Transform)
Pool myPool = PoolKit.GetPoolContainingPrefab(prefabTransform);

// Cache a pool by finding a specific prefab it controls (by Name)
Pool myPool = PoolKit.GetPoolContainingPrefab("My Prefab Name");

// Cache a pool by finding a specific instance it controls (by GameObject)
Pool myPool = PoolKit.GetPoolContainingInstance(instanceGameObject);

// Cache a pool by finding a specific instance it controls (by Transform)
Pool myPool = PoolKit.GetPoolContainingInstance(instanceTransform);

// Cache a Spawner by name
Spawner mySpawner = PoolKit.GetSpawner("MySpawner");

	 PoolKit	for	Unity	–	Page	53	 	

Does	A	Pool	Exist?	

PoolKit.PoolExists()	:	Returns	bool	
You	can	easily	find	out	if	a	pool	exists	by	using	this	method:	

	
Despawn	All	Pools	

PoolKit.DespawnAll()	
PoolKit.DespawnAllLocalPools()	
PoolKit.DespawnAllGlobalPools()	
You	can	despawn	all	pools,	all	local	pools	or	all	global	pools	with	a	single	command	like	this:	
NOTE:	You	can	also	use:	DespawnAllLocal()	and	DespawnAllGlobal()	

	
Destroying	Pools	

PoolKit.DestroyPool()	
Other	than	destroying	their	GameObjects	directly,	you	can	easily	destroy	a	specific	pool	by	name:	
NOTE:	You	can	also	use:	Remove()	and	RemovePool()	

	
PoolKit.DestroyAllPools()	
PoolKit.DestroyAllLocalPools()	
PoolKit.DestroyAllGlobalPools()	
You	can	destroy	all	pools,	all	local	pools	or	all	global	pools	with	a	single	command	like	this:	
NOTE:	You	can	also	use:	RemoveAll(),	RemoveAllPools(),	DestroyAll(),	RemoveAllLocal(),	
RemoveAllLocalPools(),	DestroyAllLocal(),	RemoveAllGlobal(),	RemoveAllGlobalPools(),	and	DestroyAllGlobal()	

	
Creating	A	New	Pool	

PoolKit.CreatePool	(string		poolName,	Pool.PoolType	poolType,	bool	enablePoolProtection,		bool	
allowDelegatesAndEvents,	bool	dontDestroyOnLoad,		PoolItem[]	poolItems,	GameObject	
usingGameObject	=	null)	:	Returns	Pool.	
To	create	a	new	pool	at	runtime	you	must	create	and	setup	at	least	1	PoolItem	(the	equivalent	of	
one	of	the	prefabs	in	the	Pool’s	Prefab	tab).	You	can	then	add	it	to	the	CreatePool	method:	
NOTE:	You	can	also	use:	Add(),	AddPool()	and	Create()	

// Does a Pool Exist? (Enter the name of the pool to find)
if(PoolKit.PoolExists("MyPool")){
 // Do something if this pool exists!
}

// Despawn all pools and instances
PoolKit.DespawnAll();

// Destroy a pool by name
PoolKit.DestroyPool("MyPool");

// Destroy all pools
PoolKit.DestroyAllPools();

// Firstly, Create at least 1 Pool Item to add to the pool
PoolItem myPI = new PoolItem();
myPI.prefabToPool = myPrefab; // The prefab we're going to pool (GameObject)
myPI.poolSize = 10; // The size of the pool at start

// NOTE: Look at the PoolItem.cs script to understand the class in more detail!
// Everything you can do in the editor is possible with scripting.

// Add Pool Item to an entirely new pool
Pool myNewPool = PoolKit.CreatePool (
 "My New Pool", // Name of the new pool
 Pool.PoolType.Automatic, // The type of the new pool
 true, // Should we enable Pool Protection?

true, // Should we allow delegates and Events on this pool?
 false, // Don't destroy on Load
 new PoolItem[]{ myPI }, // A list of Pool Items (like the prefab tab)
 null // GameObject to add Pool component. Null = new
);

	 PoolKit	for	Unity	–	Page	54	 	

Overriding	How	PoolKit	Instantiates	And	Destroys	Instances	

//	Global	Override	Events	 	 	 	 	 	 //	Local	Override	Events	
PoolKit.OnCreateInstance	 	 	 	 	 	 Pool.OnCreateInstance	
PoolKit.OnDestroyInstance		 	 	 	 	 Pool.OnDestroyInstance	
	
If	you	wish	to	globally	override	the	way	PoolKit	instantiates	and	Destroys	instances,	this	can	be	
achieved	by	subscribing	to	the	PoolKit	InstantiatePrefab	and	DestroyInstance	events,	which	
will	act	as	an	override.	You	can	also	do	this	locally	at	the	Pool	level	using	the	same	approach.	

It	is	important	to	note	that	only	prefabs	that	have	had	their	‘Enable	Instantiation	Events’	and	
‘Enable	Destroy	Events’	checkboxes	turned	on	in	the	pool	can	use	this	feature	(otherwise	
delegates	would	continuously	be	checked	needlessly	which	would	diminish	performance).		

You	can	set	this	up	easily	in	the	Editor.	Click	the	relevant	pool	and	select	the	‘Prefabs’	tab.	Find	
the	prefab	you	want	to	override	and	click	into	the	‘Advanced’	tab	to	find	the	override	checkboxes.		

Alternatively,	you	can	forcibly	turn	on	the	checkboxes	at	runtime	with	scripting.	In	the	example	
below,	we	attempt	to	override	the	way	a	specific	prefab	will	be	instantiated	and	destroyed.	In	the	
first	part	of	OnEnable,	we	find	the	pool	containing	the	prefab	we’re	interested	in	and	then	we	
request	the	PoolItem	within	the	Pool	that	manages	the	prefab	(the	PoolItem	is	essentially	what	
you	see	in	the	Prefabs	tab).	From	there,	we	have	access	to	the	checkboxes	and	can	force	them	on.	
If	the	prefab	already	has	the	checkboxes	set	in	the	Editor,	this	section	of	the	code	isn’t	needed.	

We	can	then	subscribe	to	the	Events	using	the	template	below.	

	 	

public GameObject prefabToOverride; // This is the prefab we want to take over
Pool _findPool; // This is a helper variable to cache the pool

void OnEnable(){

 // OPTIONAL: Find the PoolItem containing the prefab we want to override, and make sure
 // it is turned on - Useful if we’ve forgotten to enable it in the Pool's inspector!

 // Find the pool containing the prefab we want to override ...
 if(_findPool==null){ _findPool = PoolKit.GetPoolContainingPrefab(prefabToOverride); }

 // Make sure the instantiate and destroy delegates are enabled for the prefab (PoolItem)
 if(findPool != null){
 PoolItem pi = _findPool.GetPoolItem(prefabToOverride);
 if(pi!=null){
 pi.enableInstantiateDelegates = true;
 pi.enableDestroyDelegates = true;
 }
 }

 // Subsribe to the override events
 PoolKit.OnCreateInstance += OnCreateInstance;
 PoolKit.OnDestroyInstance += OnDestroyInstance;
}

void OnDisable(){

 // Unsubsribe from the override events
 PoolKit.OnCreateInstance -= OnCreateInstance;
 PoolKit.OnDestroyInstance -= OnDestroyInstance;
}

// Event called when we must instantiate a new instance
GameObject OnCreateInstance(GameObject prefab){

 // NOTE: Make sure to return the created GameObject!
 if (prefab != null){ return Instantiate(prefab); }

 // Return null if something goes wrong
 return null;
}

// Event called when we must destroy an instance
void OnDestroyInstance(GameObject instance){

// Make sure to destroy the instance
 if (instance != null){ Destroy(instance);}
}

	 PoolKit	for	Unity	–	Page	55	 	

Pool API
	
Once	you	have	access	to	a	Pool,	you	can	use	a	variety	of	methods	and	events.	
	

Spawn	An	Instance	By	Name	

The	following	methods	return	the	instance’s	Transform.	

	
Pool.Spawn(string	prefabName)	:	Returns	Transform		
the	fastest	way	to	spawn	an	instance	by	name	is	to	request	its	prefab	name.	The	instance’s	
position,	rotation,	scale	and	parent	will	all	be	handled	using	the	Pool’s	default	settings.	

Alternate	versions	are	available,	allowing	you	specifically	set	positions,	rotations	and	parents.	
	
Pool.Spawn(string	prefabName,	Vector3	position,	Vector3	eulerRotation,	Transform	parent	=	null)		
:	Returns	Transform		

	
Pool.Spawn(string	prefabName,	Vector3	position,	Quaternion	rotation,	Vector3	localScale,	
Transform	parent	=	null)	:	Returns	Transform		

Pool.Spawn(string	prefabName,	Vector3	position,	Vector3	eulerRotation,	Vector3	localScale,	
Transform	parent	=	null)	:	Returns	Transform		

	
Pool.Spawn(string	prefabName,	Vector3	position,	Quaternion	rotation,	Transform	parent	=	null)		
:	Returns	Transform		

	

NOTE:	To	return	the	instance	as	a	GameObject	instead	of	a	Transform,	replace	the	Spawn	method	
with	SpawnGO.	For	example:	

	

	

	

	

	

// Spawn an instance of the prefab named “MyPrefab”
Transform myInstance = pool.Spawn("MyPrefab");

// Spawn instance of “MyPrefab” at the origin, using Vector3.zero rotation with default parent
Transform myInstance = pool.Spawn("MyPrefab", Vector3.zero, Vector3.zero, null);

// Spawn instance at the origin, with no rotation, default scale with default parent
Transform myInstance = pool.Spawn("MyPrefab", Vector3.zero, Quaternion.identity, Vector3.one,
null);

// Spawn instance at the origin, Vector3.zero rotation, default scale with default parent
Transform myInstance = pool.Spawn("MyPrefab", Vector3.zero, Vector3.zero, Vector3.one, null);

// Spawn instance at the origin, without rotation with default parent
Transform myInstance = pool.Spawn("MyPrefab", Vector3.zero, Quaternion.identity, null);

// Spawn an instance of the prefab named “MyPrefab” and return its GameObject
GameObject myInstance = pool.SpawnGO("MyPrefab");

	 PoolKit	for	Unity	–	Page	56	 	

	

Spawn	An	Instance	By	GameObject	/	Transform	

The	following	methods	can	be	used	to	spawn	an	instance	of	a	prefab.	You	can	use	either	the	
prefab’s	GameObject	or	Transform	reference	as	the	first	parameter.	

	
Pool.Spawn(GameObject	/	Transform	prefab)	:	Returns	Transform		
the	fastest	way	to	spawn	an	instance	is	by	passing	a	reference	to	its	prefab.	The	instance’s	
position,	rotation,	scale	and	parent	will	all	be	handled	using	the	Pool’s	default	settings.	

Alternate	versions	are	available,	allowing	you	specifically	set	positions,	rotations	and	parents.	
	
Pool.Spawn(GameObject	/	Transform	prefab,	Vector3	position,	Vector3	eulerRotation,	Transform	
parent	=	null)		
:	Returns	Transform		

	
Pool.Spawn(GameObject	/	Transform	prefab,	Vector3	position,	Quaternion	rotation,	Vector3	
localScale,	Transform	parent	=	null)	:	Returns	Transform		

	
Pool.Spawn(GameObject	/	Transform	prefab,	Vector3	position,	Vector3	eulerRotation,	Vector3	
localScale,	Transform	parent	=	null)	:	Returns	Transform		

Pool.Spawn(GameObject	/	Transform	prefab,	Vector3	position,	Quaternion	rotation,	Transform	
parent	=	null)	:	Returns	Transform		

	

NOTE:	To	return	the	instance	as	a	GameObject	instead	of	a	Transform,	replace	the	Spawn	method	
with	SpawnGO.	For	example:	

	

	 	

// Spawn an instance of the prefab variable “MyPrefab”
Transform myInstance = pool.Spawn(MyPrefab);

// Spawn instance at the origin, using Vector3.zero rotation with default parent
Transform myInstance = pool.Spawn(MyPrefab, Vector3.zero, Vector3.zero, null);

// Spawn instance at the origin, with no rotation, default scale with default parent
Transform myInstance = pool.Spawn(MyPrefab, Vector3.zero, Quaternion.identity, Vector3.one,
null);

// Spawn instance at the origin, Vector3.zero rotation, default scale with default parent
Transform myInstance = pool.Spawn(MyPrefab, Vector3.zero, Vector3.zero, Vector3.one, null);

// Spawn instance at the origin, without rotation with default parent
Transform myInstance = pool.Spawn(MyPrefab, Vector3.zero, Quaternion.identity, null);

// Spawn an instance of the prefab variable “MyPrefab” and return it’s GameObject
GameObject myInstance = pool.SpawnGO(MyPrefab);

	 PoolKit	for	Unity	–	Page	57	 	

Despawn	A	Specific	Instance	By	GameObject	/	Transform	

	
Pool.Despawn(GameObject	/	Transform	instance)	:	Returns	bool	(true	=	success,	false	=	failed)		
the	fastest	way	to	despawn	an	instance	is	to	directly	call	the	Despawn	method	on	the	pool	that	is	
controlling	it.	

	
Despawn	All	Instances	In	A	Pool	

	
Pool.DespawnAll()	:	void	
Pool.DespawnAll(GameObject	/	Transform	prefab)	:	void		
You	can	despawn	all	instances	in	a	pool	with	a	single	command.	Alternatively	you	can	despawn	
all	instances	of	a	specific	prefab.	

	
Get	Pool	Item	(container	for	prefabs)	

	
Pool.GetPoolItem(GameObject	prefab)	:	Returns	PoolItem	
If	you	need	to	get	the	PoolItem	of	a	prefab	within	a	pool,	you	do	so	like	this:	

	
Get	Instance	Counts	

	
Pool.GetInstanceCount()	:	Returns	int	
Get	the	total	of	all	spawned	and	despawned	instances	in	a	pool	

Pool.GetInstanceCount(GameObject	/	Transform	prefab)	:	Returns	int	
Get	the	total	of	all	spawned	and	despawned	instances	of	a	specific	prefab	in	a	pool.	

Pool.GetInstanceCount(string	prefabName)	:	Returns	int	
Get	the	total	of	all	spawned	and	despawned	instances	of	a	specific	prefab	in	a	pool	by	name.	
	

Pool.GetActiveInstanceCount()	:	Returns	int	
Get	the	total	of	all	spawned	instances	in	a	pool	

Pool.GetActiveInstanceCount(GameObject	/	Transform	prefab)	:	Returns	int	
Get	the	total	of	all	spawned	instances	of	a	specific	prefab	in	a	pool.	

Pool.GetActiveInstanceCount(string	prefabName)	:	Returns	int	
Get	the	total	of	all	spawned	instances	of	a	specific	prefab	in	a	pool	by	name.	
	
	

	 	

// Tell myPool to despawn this GameObject
myPool.Despawn(gameObject);

// Tell myPool to despawn all instances of the prefab “myPrefab”
myPool.DespawnAll(myPrefab);

// Tell myPool to despawn everything
myPool.DespawnAll();

// Get the PoolItem from the pool “myPool” that manages “myPrefab”.
myPool.GetPoolItem(myPrefab);

	 PoolKit	for	Unity	–	Page	58	 	

Pool.GetInactiveInstanceCount()	:	Returns	int	
Get	the	total	of	all	despawned	instances	in	a	pool	

Pool.GetInactiveInstanceCount(GameObject	/	Transform	prefab)	:	Returns	int	
Get	the	total	of	all	despawned	instances	of	a	specific	prefab	in	a	pool.	

Pool.GetInactiveInstanceCount(string	prefabName)	:	Returns	int	
Get	the	total	of	all	despawned	instances	of	a	specific	prefab	in	a	pool	by	name.	

	

Get	An	Array	Of	All	Instances	

	
Pool.GetPoolKitInstances()	:	Returns	PoolKitInstance[]	
This	will	create	and	return	a	safe	copy	of	all	managed	instances	in	the	pool.	This	is	a	very	
complicated	operation	and	should	be	used	sparingly.	PoolKitInstances	is	a	class	used	to	manage	
the	state	of	all	instances	managed	by	a	Pool.	You	will	likely	prefer	GetInstances()	instead.	
	

	

Pool.GetInstances()	:	Returns	Transform[]	
This	will	create	and	return	an	array	of	all	instances	in	the	pool	by	caching	their	Transforms.	This	
is	a	very	complicated	operation	and	should	be	used	sparingly.	

	

Pool.GetInstances(GameObject	/	Transform	prefab)	:	Returns	Transform[]	
This	will	create	and	return	an	array	of	all	instances	of	a	prefab	by	caching	their	Transforms.	This	
is	a	very	complicated	operation	and	should	be	used	sparingly.	The	prefab	is	found	by	passing	a	
reference	of	either	it’s	GameObject	or	Transform.	

	

Pool.GetInstances(string	prefabName)	:	Returns	Transform[]	
This	will	create	and	return	an	array	of	all	instances	of	a	prefab	by	caching	their	Transforms.	This	
is	a	very	complicated	operation	and	should	be	used	sparingly.	The	prefab	is	found	by	name.	

	

Get	An	Array	Of	All	Spawned	Instances	
	

Pool.GetActiveInstances()	:	Returns	Transform[]	
This	will	create	and	return	an	array	of	all	active	instances	in	the	pool	by	caching	their	Transforms.	
This	is	a	very	complicated	operation	and	should	be	used	sparingly.	

// Get a copy of all the PoolKitInstance classes from myPool
PoolKitInstance[] instances = myPool.GetPoolKitInstances();

// Get a copy of all instance Transforms in myPool
Transform[] instances = myPool.GetInstances();

// Get a copy of all instance Transforms of myPrefab in myPool
Transform[] myPrefabInstances = myPool.GetInstances(myPrefab);

// Get a copy of all instance Transforms of “myPrefab” in myPool
Transform[] myPrefabInstances = myPool.GetInstances("MyPrefab");

// Get a copy of all spawned instance Transforms in myPool
Transform[] instances = myPool.GetActiveInstances();

	 PoolKit	for	Unity	–	Page	59	 	

Pool.GetActiveInstances(GameObject	/	Transform	prefab)	:	Returns	Transform[]	
This	will	create	and	return	an	array	of	all	active	instances	of	a	prefab	by	caching	their	Transforms.	
This	is	a	very	complicated	operation	and	should	be	used	sparingly.	The	prefab	is	found	by	
passing	a	reference	of	either	it’s	GameObject	or	Transform.	

	
Pool.GetActiveInstances(string	prefabName)	:	Returns	Transform[]	
This	will	create	and	return	an	array	of	all	active	instances	of	a	prefab	by	caching	their	Transforms.	
This	is	a	very	complicated	operation	and	should	be	used	sparingly.	The	prefab	is	found	by	name.	

	

Get	An	Array	Of	All	Despawned	Instances	
	

Pool.GetInactiveInstances()	:	Returns	Transform[]	
This	will	create	and	return	an	array	of	all	inactive	instances	in	the	pool	by	caching	their	
Transforms.	This	is	a	very	complicated	operation	and	should	be	used	sparingly.	

	
Pool.GetInactiveInstances(GameObject	/	Transform	prefab)	:	Returns	Transform[]	
This	will	create	and	return	an	array	of	all	inactive	instances	of	a	prefab	by	caching	their	
Transforms.	This	is	a	very	complicated	operation	and	should	be	used	sparingly.	The	prefab	is	
found	by	passing	a	reference	of	either	it’s	GameObject	or	Transform.	
	

	
Pool.GetInactiveInstances(string	prefabName)	:	Returns	Transform[]	
This	will	create	and	return	an	array	of	all	inactive	instances	of	a	prefab	by	caching	their	
Transforms.	This	is	a	very	complicated	operation	and	should	be	used	sparingly.	The	prefab	is	
found	by	name.	

	

Helper	Methods	

	
Pool.HasActiveInstances()	:	Returns	bool	
If	there	are	any	spawned	instances	in	a	pool,	this	will	return	true.	

Pool.HasActiveInstances(GameObject	/	Transform	prefab)	:	Returns	bool	
If	there	are	any	spawned	instances	of	a	specific	prefab	in	a	pool,	this	will	return	true.	

Pool.HasActiveInstances(string	prefabName)	:	Returns	bool	
If	there	are	any	spawned	instances	of	a	specific	prefab	in	a	pool	(by	name),	this	will	return	true.	

	 	

// Get a copy of all spawned instance Transforms of myPrefab in myPool
Transform[] myPrefabInstances = myPool.GetActiveInstances(myPrefab);

// Get a copy of all spawned instance Transforms of “myPrefab” in myPool
Transform[] myPrefabInstances = myPool.GetActiveInstances("MyPrefab");

// Get a copy of all despawned instance Transforms in myPool
Transform[] instances = myPool.GetInactiveInstances();

// Get a copy of all despawned instance Transforms of myPrefab in myPool
Transform[] myPrefabInstances = myPool.GetInactiveInstances(myPrefab);

// Get a copy of all despawned instance Transforms of “myPrefab” in myPool
Transform[] myPrefabInstances = myPool.GetInactiveInstances("MyPrefab");

	 PoolKit	for	Unity	–	Page	60	 	

Pool.HasInactiveInstances()	:	Returns	bool	
If	there	are	any	despawned	instances	in	a	pool,	this	will	return	true.	

Pool.HasInactiveInstances(GameObject	/	Transform	prefab)	:	Returns	bool	
If	there	are	any	despawned	instances	of	a	specific	prefab	in	a	pool,	this	will	return	true.	

Pool.HasInactiveInstances(string	prefabName)	:	Returns	bool	
If	there	are	any	despawned	instances	of	a	specific	prefab	in	a	pool	(by	name),	this	will	return	true.	

	

Add	A	New	Prefab	To	An	Existing	Pool	

Pool.Add(PoolItem	poolItem)	=	Returns	bool	(true	=	successful,	false	=	failed)		
To	add	a	new	prefab	to	an	existing	pool,	you	must	first	setup	a	new	PoolItem	class	to	configure	
the	settings	of	the	prefab	within	the	pool.	Then	you	can	use	the	Pool.Add()	method	like	this:	

More	Information	About	Pool	Items	

You	may	have	noticed	that	a	PoolItem	is	required	before	creating	new	pools	or	adding	new	
prefabs	to	existing	pools.	

The	code	snippets	above	do	not	go	into	full	detail	about	the	options	available	in	a	Pool	Item.	
However,	every	single	variable	is	fully	documented	in	PoolItem.cs,	which	can	be	found	in	the	
PoolKit	plugins	folder.	The	core	class	variables	are	the	basis	of	the	very	same	settings	found	in	
the	Pool	>	Prefabs	tab.	It	is	highly	recommended	to	look	through	that	script	file	and	the	Pool	
Delegate	Examples	scene	found	in	the	PoolKit	Demos	&	Extras	folder.	

	 	

// Firstly, Create a Pool Item to add to the pool
PoolItem myPI = new PoolItem(); // Create a new PoolItem
myPI.prefabToPool = myPrefab; // Add the prefab we're going to pool (GameObject)
myPI.poolSize = 10; // The size of the pool at start

// Add the PoolItem to an existing pool
myExistingPool.Add(myPI);

	 PoolKit	for	Unity	–	Page	61	 	

Subscribe	To	Events	When	Instances	Are	Spawned	And	Despawned	

//	Events	
Pool.onPoolSpawn	
Pool.onPoolDespawn	
	
If	you	wish	to	subscribe	to	Events	that	trigger	when	an	instance	is	spawned	and	despawned,	you	
can	do	it	using	an	approach	such	as	the	example	below.	Please	note	that	you	must	have	‘Enable	
Pool	Events’	enabled	on	the	pool	for	this	to	work.	

The	code	also	allows	you	to	turn	on	Pool	Events	dynamically,	but	if	you	have	already	set	‘Enable	
Pool	Events’	in	the	Pool’s	inspector,	that	part	of	the	code	can	be	safely	omitted.	

public string poolName = "MyPool"; // Enter the name of the pool to cache it!
Pool findPool; // Helper variable to store the pool

void OnEnable(){

 // Find the pool (if we haven't already)
 if(findPool==null){ findPool = PoolKit.Get(poolName); }

 // If we have found the pool, subscribe!
 if(findPool!=null){

 // < Optional >

// Turn on Pool Events if you've forgotten to set it in the Pool's inspector!
 findPool.enablePoolEvents = true;

 // Subscribe to the Pool Events
 findPool.onPoolSpawn += onPoolSpawn;
 findPool.onPoolDespawn += onPoolDespawn;

 }
}

void OnDisable(){

 // If we already found the pool, unsubscribe!
 if(findPool!=null){

 // Unsubscribe from the Pool Events
 findPool.onPoolSpawn -= onPoolSpawn;
 findPool.onPoolDespawn -= onPoolDespawn;
 }
}

// Event called when the pool spawns an object
void onPoolSpawn(Transform instance, Pool pool) {
 Debug.Log("EXAMPLE: The Pool " + pool.poolName + " just spawned: " + instance.name);
}

// Event called when the pool despawns an object
void onPoolDespawn(Transform instance, Pool pool) {
 Debug.Log("EXAMPLE: The Pool " + pool.poolName + " just despawned: " + instance.name);
}

	 PoolKit	for	Unity	–	Page	62	 	

Spawner API
	
Once	you	have	access	to	a	Spawner,	you	can	use	a	variety	of	methods	and	events.	
	

Core	Actions	

Spawner.Stop()	:	void	
Stops	the	spawner.	

Spawner.Play()	:	void	
Starts	the	spawner.	

Spawner.RestartAndPlay()	:	void	
Restarts	the	spawner	and	starts	it.	

Spawner.Pause()	:	void	
Pauses	the	spawner.	

Spawner.Resume()	:	void	
Resumes	the	spawner.	

	
Helper	Methods	

Spawner.CanSpawn()	:	Returns	bool	
Returns	true	if	the	spawner	is	ready	to	create	new	instances.	

Spawner.AddPrefabToSpawner(GameObject	prefab,	float	randomWeight	=	100f)	:	void	
Allows	you	to	add	a	new	prefab	to	the	spawner	at	runtime	and	define	it’s	random	chance	weight.	

Spawner.RemovePrefabFromSpawner(GameObject	prefab)	:	void	
Allows	you	to	remove	an	existing	prefab	from	the	spawner	at	runtime.	

Spawner.ReplacePrefabInSpawner(GameObject	oldPrefab,	GameObject	newPrefab)	:	void	
Allows	you	to	replace	an	existing	prefab	with	a	new	one.	

Spawner.SetRandomWeightOfPrefab(GameObject	prefab,	float	newWeight)	:	void	
Allows	you	to	update	a	prefab’s	random	chance	weight.	

Spawner.SetRandomWeightOfPrefab(int	arrayIndex,	float	newWeight)	:	void	
Allows	you	to	update	a	prefab’s	random	chance	weight	by	finding	the	prefab	using	its	array	index	

Spawner.SetRandomWeightOfVector3Position(int	arrayIndex,	float	newWeight)	:	void	
Allows	you	to	update	a	Vector3	Spawn	Point’s	random	chance	weight	by	finding	it	using	its	array	
index	

Spawner.SetRandomWeightOfTransformPosition(int	arrayIndex,	float	newWeight)	:	void	
Allows	you	to	update	a	Transform	Spawn	Point’s	random	chance	weight	by	finding	it	using	its	
array	index	

Spawner.SetSpawnPointPosition	(int	arrayIndex,	Vector3	newPosition)	:	void	
Allows	you	to	update	the	position	of	a	Vector3	Spawn	Point	using	its	array	index.	
	

Spawn	Methods	

Spawner.Spawn(GameObject	useThisPrefab	=	null)	:	void	
Allows	you	to	force	the	Spawner	to	spawn	another	instance.	You	can	also	specifically	tell	it	which	
prefab	to	use	(provided	it	is	already	setup	in	the	Spawner).	

	

	 PoolKit	for	Unity	–	Page	63	 	

Subscribe	To	Spawner	Events	

//	Events	
Spawner.onSpawnerSpawn<	Transform	instance	>	
Spawner.onSpawnerStart	
Spawner.onSpawnerStop	
Spawner.onSpawnerPause	
Spawner.onSpawnerResume	
Spawner.onSpawnerEnd	
	
You	can	easily	subscribe	to	a	Spawner’s	Events	to	get	access	to	when	a	Spawner’s	state	changes	
and	even	to	receive	spawned	instances	(use	this	sparingly,	especially	with	fast	spawners).		

Note	that	a	Spawner	must	have	“Enable	Delegates	&	Events”	enabled	in	its	Events	tab	or	you	
have	to	set	it	in	within	the	script.	Here’s	an	example	showing	how	to	subscribe	to	all	events:	

public string spawnerName = "SPAWNER"; // Enter the name of the Spawner to cache it
Spawner spawner = null; // Helper variable to store the spawner

void OnEnable(){

 // Cache the Spawner
 if(spawner==null){ spawner = PoolKit.GetSpawner(spawnerName); }

 // Subscribe to the Spawner's events
 if(spawner != null){

 // <Optional> Force the Spawner to allow spawner events
 spawner.enableSpawnerEvents = true;

 // Subscribe
 spawner.onSpawnerSpawn += onSpawnerSpawn;
 spawner.onSpawnerStart += onSpawnerStart;
 spawner.onSpawnerStop += onSpawnerStop;
 spawner.onSpawnerPause += onSpawnerPause;
 spawner.onSpawnerResume += onSpawnerResume;
 spawner.onSpawnerEnd += onSpawnerEnd;
 }
}

void OnDisable(){

 // Unsubscribe from the Spawner's events
 if(spawner != null){

 spawner.onSpawnerSpawn -= onSpawnerSpawn;
 spawner.onSpawnerStart -= onSpawnerStart;
 spawner.onSpawnerStop -= onSpawnerStop;
 spawner.onSpawnerPause -= onSpawnerPause;
 spawner.onSpawnerResume -= onSpawnerResume;
 spawner.onSpawnerEnd -= onSpawnerEnd;
 }
}

// SPAWNER JUST SPAWNED AN INSTANCE
void onSpawnerSpawn(Transform theInstance){
 // You should always check to make sure the instance is not null
 if(theInstance!=null){ Debug.Log("EXAMPLE: " + spawnerName + " Just Spawned " +
theInstance.name); }
}

// SPAWNER JUST STARTED
void onSpawnerStart(){ Debug.Log("EXAMPLE: " + spawnerName + " has Started!");}

// SPAWNER JUST STOPPED
void onSpawnerStop(){ Debug.Log("EXAMPLE: " + spawnerName + " has Stopped!"); }

// SPAWNER JUST PAUSED
void onSpawnerPause(){ Debug.Log("EXAMPLE: " + spawnerName + " has paused!"); }

// SPAWNER JUST RESUMED
void onSpawnerResume(){ Debug.Log("EXAMPLE: " + spawnerName + " has resumed!"); }

// SPAWNER JUST ENDED
void onSpawnerEnd(){ Debug.Log("EXAMPLE: " + spawnerName + " has ended!"); }

	 PoolKit	for	Unity	–	Page	64	 	

Despawner API
	
Once	you	have	access	to	a	Despawner,	you	can	use	a	variety	of	methods	and	
events.	
	

Despawn	Actions	

Despawner.Despawn(bool	triggeredByPhysicsEvent	=	false)	:	void	
Despawn	the	instance	immediately.	You	can	optionally	choose	to	simulate	a	physics	event,	which	
has	an	impact	on	which	GameObjects	are	chain-spawned.	

Despawner.Despawn(float	despawnCountdown)	:	void	
Despawn	the	instance	after	a	countdown.	

Despawner.Despawn(float	minDespawnCountdown,	float	maxDespawnCountdown)	:	void	
Despawn	the	instance	after	a	random	range	countdown.	

	

Subscribe	To	Despawner	Events	

//	Events	
Despawner.onDespawnerDespawn	
Despawner.onDespawnerCollided<	GameObject	go	>		
Despawner.onDespawnerChainSpawn<	Transform	instance	>		
	
	
You	can	easily	subscribe	to	the	events	of	a	Despawner	and	get	notifications.	You’ll	be	notified	
when	it	is	about	to	despawn,	what	it	has	collided	with	and	even	what	instances	are	being	chain	
spawned.	

Note	that	a	Despawner	must	have	“Enable	Delegates	&	Events”	enabled	in	its	Events	tab	or	you	
have	to	set	it	in	within	the	script.	Here’s	an	example	showing	how	to	subscribe	to	all	events:	

public Despawner despawner = null; // <- Set despawner here

void OnEnable(){

 // Subscribe to the Despawner's events
 if(despawner != null){
 despawner.enableDespawnerEvents = true; // <Optional> Force despawner to use events

 // Subscribe
 despawner.onDespawnerDespawn += onDespawnerDespawn;

despawner.onDespawnerCollided += onDespawnerCollided;
 despawner.onDespawnerChainSpawn += onDespawnerChainSpawn;
 }
}

void OnDisable(){

 // Unsubscribe from the Despawner's events
 if(despawner != null){
 despawner.onDespawnerDespawn -= onDespawnerDespawn;
 despawner.onDespawnerCollided -= onDespawnerCollided;
 despawner.onDespawnerChainSpawn -= onDespawnerChainSpawn;
 }
}

// DESPAWNER JUST DESPAWNED
void onDespawnerDespawn(){ Debug.Log(despawner.gameObject.name + " has despawned!"); }

// DESPAWNER JUST COLLIDED WITH A GAMEOBJECT
void onDespawnerChainSpawn(GameObject go){
 if(go!=null){ Debug.Log(despawner.gameObject.name + " Collided With " + go.name); }
}

// DESPAWNER JUST CHAIN-SPAWNED AN INSTANCE
void onDespawnerChainSpawn(Transform inst){
 if(inst!=null){ Debug.Log(despawner.gameObject.name + " Chain-Spawned " + inst.name); }
}

	 PoolKit	for	Unity	–	Page	65	 	

PoolKit Setup API
	
You	can	also	use	scripting	to	change	the	same	options	available	in	the	
PoolKitSetup	component.		

	

PoolKit.renameObjectsInPool		=	PoolKit.RenameFormat.NoRenaming;	
You	can	setup	how	PoolKit	renames	instances	when	they	are	instantiated.	Not	renaming	them	is	
the	fastest	way	of	dealing	with	this	but	just	like	in	the	inspector,	the	following	options	are	
available:	

enum	PoolKit.RenameFormat	{		 	

EasyToReadObjectNameWithPoolKitAndIndex,		
EasyToReadObjectNameWithIndex,		
ObjectNameWithPoolKitAndIndex,		
ObjectNameWithIndex,		
NoRenaming		

}	

PoolKit.onlyRenameObjectsInEditor		=	true;	
Tell	PoolKit	whether	renaming	should	happen	in	builds	or	just	in	the	Editor.	

PoolKit.debugPoolKit		=	false;	
Tell	PoolKit	whether	to	show	debug	messages	in	the	console.	Please	note	that	debug	messages	
causes	memory	allocations!	

	 PoolKit	for	Unity	–	Page	66	 	

Support
	

If	you	need	any	assistance	or	have	suggestions	for	this	plugin,	feel	free	to	visit	
our	website	at:	

	

www.unitygamesdevelopment.co.uk	

	

I	hope	you	find	this	system	useful,	as	I	have	in	my	own	personal	projects!	=)	

All	the	best!	

-	Mel	

